Skip to main content
Log in

Enhancing Prony’s method by nuclear norm penalization and extension to missing data

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Prony’s method is a widely used method for modelling signals using a finite sum of exponential terms. It has innumerable applications in weather modelling, finance, medical signal analysis, image compression, time series analysis, power grids, etc. Prony’s method has, however, the reputation of being unstable with respect to noise perturbations. The goal of the present paper is to assess the potential improvements of a nuclear-norm-penalized regularization of Prony’s method. The nuclear norm regularization is a standard technique for improving the performance when processing noisy signals with low-rank underlying structure such as in matrix completion, matrix compressed sensing, hidden variable models. We consider both the standard setting and the case of missing data. We provide a fast estimation algorithm for the nuclear-norm-penalized least-squares minimization. Monte Carlo experiments show that regularization can significantly enhance the performance of Prony’s method with and without missing data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Otherwise, replace r by \(r-1\) until this condition is satisfied.

References

  1. Azais, J.-M., De Castro, Y., Gamboa, F.: Spike detection from inaccurate samplings. Appl. Comput. Harmonic Anal. 38(2), 177–195 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bhaskar, B.N., Tang, G., Recht, B.: Atomic norm denoising with applications to line spectral estimation. IEEE Trans. Signal Process. 61(23), 5987–5999 (2013)

    Article  MathSciNet  Google Scholar 

  3. Brockwell, P.J., Davis, R.A.: Time Series: Theory and Methods. Springer, Berlin (2013)

    MATH  Google Scholar 

  4. Cadzow, J.A.: Signal enhancement-a composite property mapping algorithm. IEEE Trans. Acoust. Speech Signal Process. 36(1), 49–62 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Candès, E.J., Fernandez-Granda, C.: Super-resolution from noisy data. J. Fourier Anal. Appl. 19(6), 1229–1254 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Candès, E.J., Fernandez-Granda, C.: Towards a mathematical theory of super-resolution. Commun. Pure Appl. Math. 67(6), 906–956 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Candès, Emmanuel J., Plan, Yaniv, et al.: Near-ideal model selection by 1 minimization. Ann. Stat. 37(5A), 2145–2177 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cho, M., Cai, J.-F., Liu, S., Eldar, Y.C., Xu, W.: Fast alternating projected gradient descent algorithms for recovering spectrally sparse signals. In: 2016 IEEE international conference on acoustics, speech and signal processing (ICASSP), IEEE, pp. 4638–4642. (2016)

  9. Chretien, S., Darses, S.: Sparse recovery with unknown variance: a lasso-type approach. IEEE Trans. Inf. Theory 60(7), 3970–3988 (2014)

  10. Duval, Vincent, Peyré, Gabriel: Exact support recovery for sparse spikes deconvolution. Found. Comput. Math. 15(5), 1315–1355 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hurst, M.P., Mittra, R.: Scattering center analysis via Prony’s method. IEEE Trans. Antennas Propag. 35(8), 986–988 (1987)

    Article  Google Scholar 

  12. Ko, W.L., Mittra, R.: A combination of FD-TD and Prony’s methods for analyzing microwave integrated circuits. IEEE Trans. Microw. Theory Tech 39(12), 2176–2181 (1991)

    Article  Google Scholar 

  13. Kumaresan, R., Tufts, D.W., Scharf, L.L.: A prony method for noisy data: Choosing the signal components and selecting the order in exponential signal models. Proc. IEEE 72(2), 230–233 (1984)

    Article  Google Scholar 

  14. Manolakis, D.G., Ingle, V.K., Kogon, S.M.: Statistical and adaptive signal processing: spectral estimation, signal modeling, adaptive filtering, and array processing, vol. 46. Artech House, Norwood (2005)

    Google Scholar 

  15. Lawrence Maple Jr., S.: Digital Spectral Analysis with Applications, vol. 1. Prentice-Hall Inc., Englewood Cliffs, NJ (1987)

    Google Scholar 

  16. Moitra, A.: Super-resolution, extremal functions and the condition number of vandermonde matrices. In: Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, pp. 821–830. ACM, New York (2015)

  17. Osborne, M.R., Smyth, G.K.: A modified Prony algorithm for exponential function fitting. SIAM J. Sci. Comput. 16(1), 119–138 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Plonka, G., Tasche, M.: Prony methods for recovery of structured functions. GAMM-Mitt. 37(2), 239–258 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Potts, D., Tasche, M.: Parameter estimation for multivariate exponential sums. Electron. Trans. Numer. Anal. 40, 204–224 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Potts, D., Tasche, M.: Parameter estimation for nonincreasing exponential sums by Prony-like methods. Linear Algebra Appl. 439(4), 1024–1039 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Quinn, B.G., Hannan, E.J.: The Estimation and Tracking of Frequency, vol. 9. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  22. Raschke, E., Stucke, U.: Approximations of band transmission functions by finite sums of exponentials. Contrib. Atmos. Phys. 46, 203–212 (1973)

    Google Scholar 

  23. Sacchini, J.J., Steedly, W.M., Moses, R.L.: Two-dimensional Prony modeling and parameter estimation. In: ICASSP, pp. 333–336. IEEE (1992)

  24. Scharf, L.L.: Statistical Signal Processing, vol. 98. Addison-Wesley, Reading, MA (1991)

    MATH  Google Scholar 

  25. Schmidt, R.: Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34(3), 276–280 (1986)

    Article  Google Scholar 

  26. Shumway, R.H., Stoffer, D.S.: An approach to time series smoothing and forecasting using the EM algorithm. J. Time Ser. Anal. 3(4), 253–264 (1982)

    Article  MATH  Google Scholar 

  27. Shumway, R.H., Stoffer, D.S.: Time Series Analysis and its Applications. Springer, Berlin (2013)

    MATH  Google Scholar 

  28. Swärd, J., Adalbjörnsson, S.I., Jakobsson, A.: High resolution sparse estimation of exponentially decaying n-dimensional signals. Signal Process. 128, 309–317 (2016)

  29. Van Blaricum, M., Mittra, R.: Problems and solutions associated with Prony’s method for processing transient data. IEEE Trans. Electromagn. Compat. 1(EMC—-20), 174–182 (1978)

    Article  Google Scholar 

  30. Weiss, L., McDonough, R.N.: Prony’s method, z-transforms, and padé approximation. Siam Rev. 5(2), 145–149 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wiscombe, W.J., Evans, J.W.: Exponential-sum fitting of radiative transmission functions. J. Comput. Phys. 24(4), 416–444 (1977)

    Article  MathSciNet  Google Scholar 

  32. Xu, H., Constantine, C., Mannor, S.: Robust regression and lasso. IEEE Trans. Inf. Theory 56(7), 3561–3574 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research leading to this paper is part of the European Metrology Research Programme (EMRP), which is jointly funded by participating countries within EURAMET and the EU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Chrétien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarray, B.A., Chrétien, S., Clarkson, P. et al. Enhancing Prony’s method by nuclear norm penalization and extension to missing data. SIViP 11, 1089–1096 (2017). https://doi.org/10.1007/s11760-017-1062-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-017-1062-2

Keywords

Navigation