Skip to main content
Log in

Edge-aware smoothing through adaptive interpolation

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The goal of edge-aware filtering is to smooth out small-scale structures while preserving large object boundaries. A fundamental idea to design such filters is to avoid smoothing across strong edges. In this paper, we explore a new approach which iteratively adds the edge information back to a smoothed image. We study the smoothed image as the starting point of the iteration and the optimal stopping criterion. We demonstrate that in a wide range of applications the proposed technique can produce competitive results as those of state-of-the-art edge-aware filters. In particular, the proposed algorithm has the best performance in texture smoothing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. One of the reviewers of this paper pointed out this result.

References

  1. Avidan, S., Shamir, A.: Seam carving for content-aware image resizing. ACM Trans. Graph. 26(3), 10:1–10:9 (2007)

    Article  Google Scholar 

  2. Black, M.J., Rangarajan, A.: On the unification of line processes, outlier rejection, and robust statistics with applications in early vision. Int. J. Comput. Vis. 19(1), 57–91 (1996)

    Article  Google Scholar 

  3. Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. SIAM Multiscale Model. Simul. 4(2), 490–530 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Deng, G.: A generalized unsharp masking algorithm. IEEE Trans. Image Process. 20(5), 1249–1261 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Deng, G.: Edge-aware BMA filters. IEEE Trans. Image Process. 25(1), 439–454 (2016)

    Article  MathSciNet  Google Scholar 

  6. Farbman, Z., Fattal, R., Lischinski, D., Szeliski, R.: Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Trans. Graph. 27(3), 67 (2008)

    Article  Google Scholar 

  7. Gastal, E.S.L., Oliveira, M.M.: Domain transform for edge-aware image and video processing. ACM Trans. Graph. 30(4), 69:1–69:12 (2011)

    Article  Google Scholar 

  8. Gonzalez, R., Woods, R.: Digital Image Processing. Pearson/Prentice Hall, London/Englewood Cliffs (2008)

    Google Scholar 

  9. He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1397–1409 (2013)

    Article  Google Scholar 

  10. Hussein, A.A., Yang, X.: Colorization using edge-preserving smoothing filter. Signal Image Video Process. 8(8), 1681–1689 (2014)

    Article  Google Scholar 

  11. Karacan, L., Erdem, E., Erdem, A.: Structure-preserving image smoothing via region covariances. ACM Trans. Graph. 32(6), 176:1–176:11 (2013)

    Article  Google Scholar 

  12. Kniefacz, P., Kropatsch, W.G.: Smooth and iteratively restore: a simple and fast edge-preserving smoothing model. In: The 39th Annual Workshop of the Austrian Association for Pattern Recognition(OAGM), pp. 1–9. eprint arXiv:1505.06702 (2015)

  13. Lindeberg, T.: Scale-space theory: a basic tool for analyzing structures at different scales. J. Appl. Stat. 21(1–2), 225–270 (1994)

    Article  Google Scholar 

  14. Milanfar, P.: Symmetrizing smoothing filters. SIAM J. Imaging Sci. 6(1), 263–284 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Nikolova, M., Ng, M.K., Zhang, S., Ching, W.K.: Efficient reconstruction of piecewise constant images using nonsmooth nonconvex minimization. SIAM J. Imaging Sci. 1(1), 2–25 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Paris, S., Durand, F.: A fast approximation of the bilateral filter using a signal processing approach. Int. J. Comput. Vis. 81(1), 24–52 (2009)

    Article  Google Scholar 

  17. Paris, S., Kornprobst, P., Tumblin, J., Durand, F.: Bilateral filtering: theory and applications. Found. Trends Comput. Graph. Vis. 4(1), 1–73 (2009)

    Article  MATH  Google Scholar 

  18. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  19. Polesel, A., Ramponi, G., Mathews, V.J.: Image enhancement via adaptive unsharp masking. IEEE Trans. Image Process. 9(3), 505–510 (2000)

    Article  Google Scholar 

  20. Saint-Marc, P., Chen, J.S., Medioni, G.: Adaptive smoothing: a general tool for early vision. IEEE Trans. Pattern Anal. Mach. Intell. 13(6), 514–529 (1991)

    Article  Google Scholar 

  21. Strong, D., Chan, T.: Edge-preserving and scale-dependent properties of total variation regularization. Inverse Probl. 19(6), S165 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, New York (2010)

    MATH  Google Scholar 

  23. Thai, B., Al-nasrawi, M., Deng, G., Su, Z.: The semi-guided bilateral filter. IET Image Process. 11(7), 512–521 (2017)

  24. Thevenaz, P., Sage, D., Unser, M.: Bi-exponential edge-preserving smoother. IEEE Trans. Image Process. 21(9), 3924–3936 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: 6th International Conference on Computer Vision, pp. 839–846. IEEE Computer Society, Washington, DC (1998)

  26. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  27. Wei, D.: Image super-resolution reconstruction using the high-order derivative interpolation associated with fractional filter functions. IET Signal Process. 10(9), 1052–1061 (2016)

    Article  Google Scholar 

  28. Wei, D., Li, Y.: Reconstruction of multidimensional bandlimited signals from multichannel samples in linear canonical transform domain. IET Signal Process. 8(6), 647–657 (2014)

    Article  Google Scholar 

  29. Wei, D., Li, Y.M.: Generalized sampling expansions with multiple sampling rates for lowpass and bandpass signals in the fractional Fourier transform domain. IEEE Trans. Signal Process. 64(18), 4861–4874 (2016)

    Article  MathSciNet  Google Scholar 

  30. Xu, L., Lu, C., Xu, Y., Jia, J.: Image smoothing via \({L_{0}}\) gradient minimization. ACM Trans. Graph. 30(6), 174:1–174:12 (2011)

    Google Scholar 

  31. Yang, Q., Wang, S., Ahuja, N.: SVM for edge-preserving filtering. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1775–1782 (2010)

  32. Zhang, Q., Shen, X., Xu, L., Jia, J.: Rolling guidance filter. In: European Conference on Computer Vision, pp. 815–830. Springer (2014)

  33. Zhang, Z.: Parameter estimation techniques: a tutorial with application to conic fitting. Image Vis. Comput. 15(1), 59–76 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukhalad Al-nasrawi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-nasrawi, M., Deng, G. & Thai, B. Edge-aware smoothing through adaptive interpolation. SIViP 12, 347–354 (2018). https://doi.org/10.1007/s11760-017-1164-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-017-1164-x

Keywords

Navigation