Skip to main content
Log in

Salient object detection using local, global and high contrast graphs

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel multi-graph-based method for salient object detection in natural images. Starting from image decomposition via a superpixel generation algorithm, we utilize color, spatial and background label to calculate edge weight matrix of the graphs. By considering superpixels as the nodes and region similarities as the edge weights, local, global and high contrast graphs are created. Then, an integration technique is applied to form the saliency maps using degree vectors of the graphs. Extensive experiments on three challenging datasets show that the proposed unsupervised method outperforms the several different state-of-the-art unsupervised methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Borji, A., Itti, L.: State-of-the-art in visual attention modeling. IEEE Trans. Pattern Anal. Mach. Intell. 35, 185–207 (2013)

    Article  Google Scholar 

  2. He, C., Chen, Z., Liu, C.: Salient object detection via images frequency domain analyzing. Signal Image Video Process. 10, 1295–1302 (2016)

    Article  Google Scholar 

  3. Chattopadhyay, C., Das, S.: Prominent moving object segmentation from moving camera video shots using iterative energy minimization. Signal Image Video Process. 9, 1927–1934 (2015)

    Article  Google Scholar 

  4. Qi, F., Zhao, D., Fan, X., Jiang, T.: Stereoscopic video quality assessment based on visual attention and just-noticeable difference models. Signal Image Video Process. 10, 737–744 (2016)

    Article  Google Scholar 

  5. Le, H.T., Urruty, T., Gbèhounou, S., Lecellier, F., Martinet, J., Fernandez-Maloigne, C.: Improving retrieval framework using information gain models. Signal Image Video Process. 11(2), 309–316 (2016)

    Article  Google Scholar 

  6. Liu, Z.-G., Yang, Y., Ji, X.-H.: Flame detection algorithm based on a saliency detection technique and the uniform local binary pattern in the YCbCr color space. Signal Image Video Process. 10, 277–284 (2016)

    Article  Google Scholar 

  7. Bhattacharya, S., Venkatsh, K.S., Gupta, S.: Background estimation and motion saliency detection using total variation-based video decomposition. Signal Image Video Process. 11, 113–121 (2017)

    Article  Google Scholar 

  8. Xu, L., Zeng, L., Wang, Z.: Saliency-based superpixels. Signal Image Video Process. 8, 181–190 (2014)

    Article  Google Scholar 

  9. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34, 2274–2281 (2012). https://doi.org/10.1109/TPAMI.2012.120

    Article  Google Scholar 

  10. Xie, Y., Lu, H., Yang, M.: Bayesian saliency via low and mid level cues. IEEE Trans. Image Process. 22, 1–1 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph based image segmentation. Int. Conf. Comput. Vis. 59, 167–181 (2004)

    Article  Google Scholar 

  12. Zhou, D., Huang, J., Schölkopf, B.: Learning with hypergraphs: clustering, classification, and embedding. In: Advances Neural Information Processing Systems (2006)

  13. Kim, Hansang, Kim, Youngbae, Sim, Jae-Young, Kim, Chang-Su: Spatiotemporal saliency detection for video sequences based on random walk with restart. IEEE Trans. Image Process. 24, 2552–2564 (2015)

    Article  MathSciNet  Google Scholar 

  14. Yu, J., Member, S., Zhao, J., Tian, J., Tan, Y.: Maximal entropy random walk for region-based visual saliency. IEEE Trans. Cybern. 44, 1661–1672 (2014)

    Article  Google Scholar 

  15. Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.H.: Saliency detection via graph-based manifold ranking. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3166–3173 (2013)

  16. Kim, C., Kim, J., Sim, J.: Multiscale saliency detection using random walk with restart. IEEE Trans. Circuits Syst. Video Technol. 24, 198–210 (2014)

    Article  Google Scholar 

  17. Yang, C., Zhang, L., Lu, H.: Graph-regularized saliency detection with convex-hull-based center prior. Signal Process. Lett. IEEE. 20, 637–640 (2013)

    Article  Google Scholar 

  18. Fu, K., Gu, I.Y.H., Yun, Y., Gong, C., Yang, J.: Graph construction for salient object detection in videos. In: 2014 22nd International Conference on Pattern Recognition, pp. 2371–2376 (2014)

  19. Harel, J., Koch, C., Perona, P.: Graph-based visual saliency. In: Advances in Neural Information Processing Systems, pp. 545–552 (2006)

  20. Gopalakrishnan, V., Hu, Y., Rajan, D.: Random walks on graphs for salient object detection in images. IEEE Trans. Image Process. 19, 3232–3242 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jiang, B., Zhang, L., Lu, H., Yang, C., Yang, M.-H.: Saliency detection via absorbing markov chain. In: 2013 IEEE International Conference on Computer Vision (ICCV), pp. 1665–1672 (2013)

  22. Li, X., Li, Y., Shen, C., Dick, A., Van Den Hengel, A.: Contextual hypergraph modeling for salient object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3328–3335 (2013)

  23. Yan, Y., Jin, Z., Zhou, J., Gao, S.: Saliency detection framework via linear neighbourhood propagation. IET Image Process. 8, 804–814 (2014)

    Article  Google Scholar 

  24. Roy, S., Das, S.: Saliency detection in images using graph-based rarity, spatial compactness and background prior. In: Computer Vision Theory and Applications (VISAPP), International Conference on 2014 Jan 5, vol. 1, pp. 523–530. IEEE (2014).

  25. Nouri, F., Kazemi, K., Danyali, H.: Salient object detection via global contrast graph. In: 2015 Signal Processing and Intelligent Systems Conference (SPIS), pp. 159–163. IEEE (2015)

  26. Lu, Y., Zhang, W., Lu, H., Xue, X.: Salient object detection using concavity context. In: Proceedings of IEEE International Conference on Computer Vision, pp. 233–240 (2011)

  27. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 888–905 (2000)

    Article  Google Scholar 

  28. Borji, A., Cheng, M.-M., Jiang, H., Li, J.: Salient object detection: a benchmark. IEEE Trans. Image Process. 24, 5706–5722 (2015)

  29. Cheng, M.-M., Mitra, N.J., Huang, X., Torr, P.H.S., Hu, S.-M.: Global contrast based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 37, 569–582 (2015)

    Article  Google Scholar 

  30. Goferman, S., Zelnik-Manor, L., Tal, A.: Context-aware saliency detection. IEEE Trans. Pattern Anal. Mach. Intell. 34, 1915–1926 (2012)

    Article  Google Scholar 

  31. Achanta, R., Estrada, F., Wils, P., Süsstrunk, S.: Salient region detection and segmentation. In: Computer Vision Systems. pp. 66–75. Springer, Berlin (2008)

  32. Hou, X., Harel, J., Koch, C.: Image signature: highlighting sparse salient regions. IEEE Trans. Pattern Anal. Mach. Intell. 34, 194–201 (2012)

    Article  Google Scholar 

  33. Seo, H.J., Milanfar, P.: Static and space-time visual saliency detection by self-resemblance. J. Vis. 9, 15 (2009)

    Article  Google Scholar 

  34. Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1597–1604. IEEE (2009)

  35. Alpert, S., Galun, M., Basri, R., Brandt, A.: Image segmentation by probabilistic bottom-up aggregation and cue integration. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)

  36. Shi, J., Yan, Q., Xu, L., Jia, J.: Hierarchical image saliency detection on extended CSSD. IEEE Trans. Pattern Anal. Mach. Intell. 38, 717–729 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Cognitive Science and Technology Council (CSTC) of Iran under the grant number 3232.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamran Kazemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nouri, F., Kazemi, K. & Danyali, H. Salient object detection using local, global and high contrast graphs. SIViP 12, 659–667 (2018). https://doi.org/10.1007/s11760-017-1205-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-017-1205-5

Keywords

Navigation