Skip to main content

Advertisement

Log in

Sleep scoring using polysomnography data features

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The paper is devoted to the analysis of multichannel biomedical signals acquired in the sleep laboratory. The data analyzed represent polysomnographic records of (i) 33 healthy individuals, (ii) 25 individuals with sleep apnea, and (iii) 18 individuals with sleep apnea and restless leg syndrome. The initial statistical analysis of the sleep segments points to an increase in the number of Wake stages and the decrease in REM stages with increase in age. The goal of the study is visualization of features associated with sleep stages as specified by an experienced neurologist and in their adaptive classification. The results of the support vector machine classifier are compared with those obtained by the k-nearest neighbors method, decision tree and neural network classification using sigmoidal and Bayesian transfer functions. The achieved accuracy for the classification into two classes (to separate the Wake stage from one of NonREM and REM stages) is between 85.6 and 97.5% for the given set of patients with sleep apnea. The proposed models allow adaptive modification of the model coefficients during the learning process to increase the diagnostic efficiency of sleep disorder analysis, in both the clinical and home environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Procházka, A., Vyšata, O., Ťupa, O., Mareš, J., Vališ, M.: Discrimination of Axonal Neuropathy Using Sensitivity and Specificity Statistical Measures. Neural. Comput. Appl. 25(6), 1349–1358 (2014)

  2. Sanei, S.: Adaptive Processing of Brain Signals. Wiley, Hoboken (2013)

    Book  Google Scholar 

  3. Lan, Z., Sourina, O., Wang, L., Liu, Y.: Real-time EEG-based emotion monitoring using stable features. Vis. Comput. 16(3), 347–358 (2016)

    Article  Google Scholar 

  4. Kingsbury, N.G.: Complex wavelets for shift invariant analysis and filtering of signals. Appl. Comput. Harmon. Anal. 10(3), 234–253 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Jerhotová, E., Švihlík, J., Procházka, A.: Biomedical Image Volumes Denoising via the Wavelet Transform. In: G. Gargiulo, A. McEwan (eds.) Appl. Biomed. Eng., INTECH, pp. 435–458 (2011)

  6. Van Cauter, E., Leproults, R., Plat, L.: Age-related changes in slow wave sleep and REM sleep and relationship with growth hormone and cortisol levels in healthy men. JAMA 284(7), 861–868 (2000)

    Article  Google Scholar 

  7. Peters, K., Ray, L., Fogel, S., Smith, V., Smith, C.: Age differences in the variability and distribution of sleep spindle and rapid eye movement densities. PLoS ONE 9(3), e91,047 (2014)

    Article  Google Scholar 

  8. Ohayon, M., Carskadon, M., Guilleminault, C., Vitiello, M.: Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: developing normative sleep values across the human lifespan. Sleep 27(7), 1255–1273 (2004)

    Article  Google Scholar 

  9. Duda, R., Hart, P., Stork, D.: Pattern Classification. Willey, New York (2001)

    MATH  Google Scholar 

  10. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Berlin (2006)

    MATH  Google Scholar 

  11. Assefa, S., Diaz-Abad, M., Korotinsky, A., Tom, S., Scharf, S.M.: Comparison of a simple obstructive sleep apnea screening device with standard in-laboratory polysomnography. Sleep Breath. 20(2), 537–541 (2016)

    Article  Google Scholar 

  12. Colten, H., Altenvogt, B.: Sleep Disorders and Sleep Deprivation: An Unmet Public Health Problem. The National Academic Press, Washington, DC (2006)

    Google Scholar 

  13. Hashizaki, M., Nakajima, H., Kume, K.: Monitoring of weekly sleep pattern variations at home with a contactless biomotion sensor. Sensors 15(8), 18,950–18,964 (2014)

    Article  Google Scholar 

  14. Metsis, V., Kosmopoulos, D., Athitsos, V., Makedon, F.: Non-invasive analysis of sleep patterns via multimodal sensor input. Pers. Ubiquitous Comput. 18, 19–26 (2014)

    Article  Google Scholar 

  15. Dafna, E., Tarasiuk, A., Zigel, Y.: Sleep-wake evaluation from whole-night non-contact audio recordings of breathing sounds. PLoS ONe 10(2), 117 (2015)

    Article  Google Scholar 

  16. Sharma, R., Pachori, R., Upadhyay, A.: Automatic sleep stages classification based on iterative filtering of electroencephalogram signals. Neural Comput. Appl. 2810, 2959–2978 (2017)

    Article  Google Scholar 

  17. Zhu, G., Li, Y., Wen, P.: Analysis and classification of sleep stages based on difference visibility graphs from a single-channel EEG signal. IEEE J. Biomed. Health. Inform. 18(6), 1813–1821 (2014)

    Article  Google Scholar 

  18. Gunes, S., Polat, K., Yosunkaya, S.: Efficient sleep stage recognition system based on EEG signal using \(k\)-means clustering based feature weighting. Expert Syst. Appl. 37(12), 7922–7928 (2010)

    Article  Google Scholar 

  19. Sen, B., Peker, M., Cavusoglu, A., Celebi, F.: A comparative study on classification of sleep stage based on EEG signals using feature selection and classification algorithms. J. Med. Syst. 38(18), 1–21 (2014)

    Google Scholar 

  20. Mohammadi, S., Kouchaki, S., Ghavami, M., Sanei, S.: Improving time frequency domain sleep EEG classification via singular spectrum analysis. J. Neurosci. Meth. 273, 96–106 (2016)

    Article  Google Scholar 

  21. Griessenberger, H., Heib, D.P.J., Kunz, A.B., Hoedlmoser, K., Schabus, M.: Assessment of a wireless headband for automatic sleep scoring. Sleep Breath. 17(2), 747–752 (2013)

    Article  Google Scholar 

  22. Procházka, A., Schätz, M., Centonze, F., Kuchyňka, J., Vyšata, O., Vališ, M.: Extraction of breathing features using MS Kinect for sleep stage detection. SIViP 10(7), 1278–1286 (2016)

    Article  Google Scholar 

  23. Erden, F., Velipasalar, S., Alkar, A., Cetin, A.: Sensors in assisted living. IEEE Signal Proc. Mag. 33(2), 36–44 (2016)

    Article  Google Scholar 

  24. Procházka, A., Vyšata, O., Vališ, M., Ťupa, O., Schatz, M., Mařík, V.: Use of image and depth sensors of the Microsoft Kinect for the detection of gait disorders. Neural Comput. Appl. 26, 1621–1629 (2015)

  25. Lee, J., Yoo, S.: Electroencephalography analysis using neural network and support vector machine during sleep. Engineering 5, 88–92 (2013)

    Article  Google Scholar 

  26. Kianzad, R., Kordy, H.: Automatic sleep stages detection based on EEG signals using combination of classifiers. J. Electr. Comput. Eng. Innov. 1(2), 88–92 (2013)

    Google Scholar 

  27. Lajnef, T., Chaibi, S., Ruby, P., Aguera, P., Eichenlaub, J., Samet, M., Kachouri, A., Jerbi, K.: Learning machines and sleeping brains: automatic sleep stage classification using decision-tree multi-class support vector machines. J. Neurosci. Methods. 250, 94–105 (2015)

    Article  Google Scholar 

  28. Ozsen, S.: Classification of sleep stages using class-dependent sequential feature selection and artificial neural network. Neural Comput. Appl. 23, 1239–1250 (2013)

    Article  Google Scholar 

  29. Zoubek, L., Charbonnier, S., Lesecq, S., Buguet, A., Chapotot, F.: Feature selection for sleep/wake stages classification using data driven methods. Biomed. Signal Process. Control 2, 171–179 (2007)

    Article  Google Scholar 

  30. Boostani, R., Karimzadeha, F., Nami, M.: A comparative review on sleep stage classification methods in patients and healthy individuals. Comput. Methods Programs Biomed. 140, 77–91 (2017)

    Article  Google Scholar 

  31. Looney, D., Goverdovsky, V., Rosenzweig, I., Morrell, M., Mandic, D.: Wearable in-ear encephalography sensor for monitoring sleep. Ann. Am. Thorac. Soc. 13(12), 2230–2233 (2016)

    Article  Google Scholar 

  32. Shokoueinejad, M., Fernandez, C., Carroll, E., et al.: Sleep apnea: a review of diagnostic sensors, algorithms, and therapies. Physiol. Meas. 38(9), R204–R252 (2017)

    Article  Google Scholar 

  33. Rutkowski, T.: Datadriven multimodal sleep apnea events detection. J. Med. Syst. 40, 162:1–162:7 (2016)

    Article  Google Scholar 

  34. Bušková, J., Ibarburu, V., Šonka, K., R\({\mathring{\text{u}}}\)žička, E.: Screening for REM sleep behavior disorder in the general population. Sleep Med. 24, 147–147 (2016)

  35. Sanei, S., Chambers, J.: EEG Signal Processing. Wiley, Hoboken (2007)

    Book  Google Scholar 

  36. Silveira, T.L.T., Kozakevicius, A.J., Rodrigues, C.R.: Single-channel EEG sleep stage classification based on a streamlined set of statistical features in wavelet domain. Med. Biol. Eng. Comput. 55(2), 343–352 (2017)

    Article  Google Scholar 

  37. Lue, J., Ying, K., Bai, J.: Savitzky–Golay smoothing and differentiation filter for even 428 number data. Signal Process. 85(7), 1429–1434 (2005)

    Article  MATH  Google Scholar 

  38. Schafer, R.: What Is a Savitzky–Golay filter? IEEE Signal Proc. Mag. 28(4), 111–7 (2011)

    Article  Google Scholar 

  39. Enshaeifar, S., Kouchaki, S., Cheong Took, C., Sanei, S.: Quaternion singular spectrum analysis of electroencephalogram with application in sleep analysis. IEEE Trans. Neural Syst. Rehab. Eng. 24, 57–67 (2016)

    Article  Google Scholar 

  40. Procházka, A., Vyšata, O., Vališ, M., Ťupa, O., Schatz, M., Mařík, V.: Bayesian classification and analysis of gait disorders using image and depth sensors of Microsoft Kinect. Digit. Signal Process. 47(12), 169–177 (2015)

  41. Reimer, U., Emmenegger, S., Maier, E., Zhang, Z., Khatami, R.: Recognizing Sleep Stages with Wearable Sensors in Everyday Settings. In: Interational Conference on Information and Communication Technologies for Ageing Well and e-Health (ICT4AWE), pp. 172–179 (2017)

Download references

Acknowledgements

All data were kindly provided by the Sleep Laboratory of the Faculty Hospital in Hradec Králové, Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleš Procházka.

Ethics declarations

Ethical Approval

All procedures involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki Declaration and its later amendments. Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Procházka, A., Kuchyňka, J., Vyšata, O. et al. Sleep scoring using polysomnography data features. SIViP 12, 1043–1051 (2018). https://doi.org/10.1007/s11760-018-1252-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-018-1252-6

Keywords

Navigation