Skip to main content
Log in

GMD: geometric model-based local binary descriptor

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Many researchers focused on binary descriptor due to its low computational power. It is an adequate solution for embedded systems. The previous works on the elaboration of binary descriptor did not exploit all information brought by a patch. The authors used just the pixel intensities to generate a binary test, so these descriptors lack efficiency on patch description. In this paper, we design a new descriptor named Geometric Model Descriptor (GMD) based on intensity and geometric coordinate of the pixel. We divide the patch into a grid cell (sub-patches); then each sub-patch is augmented in dimension (being 3D) by considering the intensity as the third dimension rather than its two dimensions (2D) form. Based on geometric modeling (polynomial interpolation and Bezier curve), we interpolate the cloud of points to find an approximation of the geometric model for each sub-patch. A binary test will be performed between the coefficients of sub-patch models to generate the patch description. The deep evaluation of GMD on a benchmark data set shows a high discrimination in the presence of similarity. The GMD exhibits robustness and reliability against severe changes. A computation costing is reported in the results section by presenting a compromise between accuracy and real-time constraint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 21(2), 91–110 (2014)

    Article  Google Scholar 

  2. Snavely, N., Seitz, S.M., Szeliski, R.: Skeletal sets for efficient structure from motion. Comput. Vis. Pattern Recognit. 1, 2 (2008)

    Google Scholar 

  3. Marchand, E., Uchiyama, H., Spindler, F.: Pose estimation for augmented reality: a hands-on survey. IEEE Trans. Vis. Comput. Graph 22(12), 2633–2651 (2016)

    Article  Google Scholar 

  4. Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: Proceedings of IEEE ACM International Symposium on Mixed Augmented Reality, pp. 225–234. Japan (2007)

  5. Engel, J., Schops, T., Cremers, D.: LSD-SLAM: Large-scale direct monocular SLAM. In: Proceedings of European Conference on Computer Vision, pp. 834–849. Zurich, Switzerland (2014)

  6. Mur-Artal, R., Montiel, J.M., Tardos, J.D.: ORB-SLAM: a versatile and accurate monocular slam system. IEEE Trans. Robot. 31(5), 1147–1163 (2015)

    Article  Google Scholar 

  7. Bellarbi, A., Otmane, S., Zenati, N.: MOBIL: a moments based local binary descriptor. In: International Symposium on Mixed and Augmented Reality, Munich, Germany (2014)

  8. Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  9. Calonder, M., Lepetit, V., Strecha.: BRIEF: binary robust independent elementary features. In: Computer Vision (ECCV 2010), pp. 778–792. Berlin (2010)

  10. Leutenegger, S., Chli, M., Siegwart, R.Y.: BRISK: binary robust invariant scalable keypoints. In: IEEE International Conference on Computer Vision, pp. 2548–2555. Barcelona, Spain (2011)

  11. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: IEEE International Conference on Computer Vision, pp. 2564–2571. Barcelona, Spain (2011)

  12. Hu, M.K.: Visual pattern recognition by moment invariants. In: IRE Transactions on Information Theory, IT(8), pp. 179–187 (1962)

  13. Alahi, A., Ortiz, R., Vandergheynst, P.: FREAK: fast retinal keypoint. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 510–517 (2012)

  14. Yang, X., Cheng, K.T.: LDB: An ultra-fast feature for scalable augmented reality on mobile devices. In: IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 49–57 (2012)

  15. Wei, Y., Lin, G., Sha, Y., Yonggang, D.: An improved LBP algorithm for texture and face classification. Signal Image Video Process. 8(1), 155–161 (2014)

    Google Scholar 

  16. Bellarbi, A., Zenati, N., Otmane, S., Belghit, H.: Learning moment-based fast local binary descriptor. J. Electron. Imaging 26(2), 1017–9909 (2017)

    Article  Google Scholar 

  17. Faux, I.D., Pratt, M.J.: Computational Geometry for Design and Manufacture. Ellis Horwood Ltd, New York (1981)

    MATH  Google Scholar 

  18. Besl, P.J.: Geometric modeling and computer vision. Proc. IEEE 76(8), 936–958 (1988)

    Article  Google Scholar 

  19. Moron, V.: Mise en correspondance de données 3D avec un modèle CAO: application à l’inspection automatique. In: Thesis. INSA, Lyon (1996)

  20. Farin, G.E.: Courbes et surfaces pour la CGAO. Masson, Paris (1992)

  21. Kobzili, E., Larbes, C., Allam, A., Demim, F.: 3 D polynomial interpolation based local binary descriptor. In: CSA, Springer (LNNS) series. Algiers, Algeria (2018)

  22. Piegel, L., Tiller, W.: The NURBS Book. Springer, Berlin (2012)

    Google Scholar 

  23. Mariusz, O.: An optimisation approach to the design of a fast, compact and distinctive binary descriptor. Signal Image Video Process. 10(8), 1401–1408 (2016)

    Article  Google Scholar 

  24. Brown, M., Christopher, M.: Some mathematical and representational aspects of solid modeling. IEEE Trans. Pattern Anal. Mach. Intell. 3(4), 444–453 (1981)

    Article  Google Scholar 

  25. Bhanu, B., Ho, C.: CAD-based 3D object representation for robot vision. IEEE Comput. 8, 19–35 (1987)

    Article  Google Scholar 

  26. Kholladi, M.K.: Représentation, modélisation et manipulation des connaissances spatiales en géomatique GREMACOS. In: Thesis. Villeurbanne, INSA, Lyon (1991)

  27. Demailly, J.P.: Analyse numérique et équations différentielles. EDP sciencies, Grenoble (2006)

    MATH  Google Scholar 

  28. Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Computer Vision-ECCV 2006, pp. 430–443. Springer (2006)

  29. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kobzili Elhaouari.

Additional information

Kobzili Elhaouari is currently a Ph.D. student at ENP of Algiers. Larbes Cherif is a full professor at ENP of Algiers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elhaouari, K., Cherif, L. GMD: geometric model-based local binary descriptor. SIViP 13, 289–297 (2019). https://doi.org/10.1007/s11760-018-1356-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-018-1356-z

Keywords

Navigation