Skip to main content
Log in

A framework for retinal vessel segmentation from fundus images using hybrid feature set and hierarchical classification

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Retinal blood vessels play an imperative role in detection of many ailments, such as cardiovascular diseases, hypertension, and diabetic retinopathy. The automated way of segmenting vessels from retinal images can help in early detection of many diseases. In this paper, we propose a framework based on hybrid feature set and hierarchical classification approach to segment blood vessels from digital retinal images. Firstly, we apply bidirectional histogram equalization on the inverted green channel to enhance the fundus image. Six discriminative feature extraction methods have been employed comprising of local intensities, local binary patterns, histogram of gradients, divergence of vector field, high-order local autocorrelations, and morphological transformation. The selection of feature sets has been carried out by classifying vessel and background pixels using random forests and evaluating the segmentation performance for each category of features. The selected feature sets are then used in conjunction with our proposed hierarchical classification approach to segment the vessels. The proposed framework has been tested on the DRIVE, STARE, and CHASEDB1 which are the benchmark datasets for retinal vessel segmentation methods. The results obtained from the experimental analysis show that the proposed framework can achieve better results than most state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fraz, M.M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A.R., Owen, C.G., Barman, S.A.: Blood vessel segmentation methodologies in retinal images—a survey. Comput. Methods Programs Biomed. 108, 407–433 (2012)

    Article  Google Scholar 

  2. Marín, D., Aquino, A., Gegundez-Arias, M.E., Bravo, J.M.: A New supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans. Med. Imaging 30, 146–158 (2011). https://doi.org/10.1109/TMI.2010.2064333

    Article  Google Scholar 

  3. Azzopardi, G., Strisciuglio, N., Vento, M., Petkov, N.: Trainable COSFIRE filters for vessel delineation with application to retinal images. Med. Image Anal. 19, 46–57 (2015). https://doi.org/10.1016/j.media.2014.08.002

    Article  Google Scholar 

  4. Soares, J.V.B., Leandro, J.J.G., Cesar, R.M., Jelinek, H.F., Cree, M.J.: Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans. Med. Imaging 25, 1214–1222 (2006). https://doi.org/10.1109/TMI.2006.879967

    Article  Google Scholar 

  5. Hoover, A.D., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 19, 203–210 (2000). https://doi.org/10.1109/42.845178

    Article  Google Scholar 

  6. Owen, C.G., Rudnicka, A.R., Mullen, R., Barman, S.A., Monekosso, D., Whincup, P.H., Ng, J., Paterson, C.: Measuring retinal vessel tortuosity in 10-year-old children: validation of the computer-assisted image analysis of the retina (CAIAR) program. Investig. Opthalmol. Vis. Sci. 50, 2004 (2009)

    Article  Google Scholar 

  7. Hassan, G., Hassanien, A.E.: Retinal fundus vasculature multilevel segmentation using whale optimization algorithm. Signal Image Video Process 12, 263–270 (2018). https://doi.org/10.1007/s11760-017-1154-z

    Article  Google Scholar 

  8. Staal, J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23, 501–509 (2004). https://doi.org/10.1109/TMI.2004.825627

    Article  Google Scholar 

  9. Lupascu, C.A., Tegolo, D., Trucco, E.: FABC: retinal vessel segmentation using AdaBoost. IEEE Trans. Inf Technol. Biomed. 14, 1267–1274 (2010)

    Article  Google Scholar 

  10. Fraz, M.M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A.R., Owen, C.G., Barman, S.A.: An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans. Biomed. Eng. 59, 2538–2548 (2012). https://doi.org/10.1109/TBME.2012.2205687

    Article  Google Scholar 

  11. Wang, S., Yin, Y., Cao, G., Wei, B., Zheng, Y., Yang, G.: Hierarchical retinal blood vessel segmentation based on feature and ensemble learning. Neurocomputing 149, 708–717 (2015). https://doi.org/10.1016/j.neucom.2014.07.059

    Article  Google Scholar 

  12. Vlachos, M., Dermatas, E.: Multi-scale retinal vessel segmentation using line tracking. Comput. Med. Imaging Graph. 34, 213–227 (2010)

    Article  Google Scholar 

  13. Zhang, L., Fisher, M., Wang, W.: Retinal vessel segmentation using multi-scale textons derived from keypoints. Comput. Med. Imaging Graph. 45, 47–56 (2015). https://doi.org/10.1016/j.compmedimag.2015.07.006

    Article  Google Scholar 

  14. Zhu, C., Zou, B., Zhao, R., Cui, J., Duan, X., Chen, Z., Liang, Y.: Retinal vessel segmentation in colour fundus images using extreme learning machine. Comput. Med. Imaging Graph. 55, 68–77 (2017)

    Article  Google Scholar 

  15. Li, Q., Feng, B., Xie, L., Liang, P., Zhang, H., Wang, T.: A cross-modality learning approach for vessel segmentation in retinal images. IEEE Trans. Med. Imaging 35, 109–118 (2016). https://doi.org/10.1109/TMI.2015.2457891

    Article  Google Scholar 

  16. Fu, H., Xu, Y., Lin, S., Kee Wong, D.W., Liu, J.: DeepVessel: retinal vessel segmentation via deep learning and conditional random field. In: Ourselin, S., Joskowicz, L., Sabuncu, M., Unal, G., Wells, W. (eds.) Medical Image Computing and Computer-Assisted Intervention, pp. 132–139. Springer, Berlin (2016)

    Google Scholar 

  17. Hu, K., Zhang, Z., Niu, X., Zhang, Y., Cao, C., Xiao, F., Gao, X.: Retinal vessel segmentation of color fundus images using multiscale convolutional neural network with an improved cross-entropy loss function. Neurocomputing 309, 179–191 (2018)

    Article  Google Scholar 

  18. Abdel-Hamid, L., El-Rafei, A., El-Ramly, S., Michelson, G.: Performance dependency of retinal image quality assessment algorithms on image resolution: analyses and solutions. Signal Image Video Process 12, 9–16 (2018)

    Article  Google Scholar 

  19. Kim, Yeong-Taeg: Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans. Consum. Electron. 43, 1–8 (1997). https://doi.org/10.1109/30.580378

    Article  Google Scholar 

  20. Ooi, C., Pik Kong, N., Ibrahim, H.: Bi-histogram equalization with a plateau limit for digital image enhancement. IEEE Trans. Consum. Electron. 55, 2072–2080 (2009). https://doi.org/10.1109/TCE.2009.5373771

    Article  Google Scholar 

  21. Lindeberg, T.: Edge detection and ridge detection with automatic scale selection. In: Computer Vision and Pattern Recognition, 1996. Proceedings CVPR’96, 1996 IEEE Computer Society Conference, vol 30, pp. 465–470 (1996). https://doi.org/10.1023/a:1008097225773

  22. Lam, B.S.Y., Hong, Y.: A novel vessel segmentation algorithm for pathological retina images based on the divergence of vector fields. IEEE Trans. Med. Imaging 27, 237–246 (2008). https://doi.org/10.1109/TMI.2007.909827

    Article  Google Scholar 

  23. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), pp. 886–893. IEEE (2005)

  24. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24, 971–987 (2002). https://doi.org/10.1109/TPAMI.2002.1017623

    Article  MATH  Google Scholar 

  25. Otsu, N., Kurita, T.: A New Scheme for Practical Flexible and Intelligent Vision Systems. In: Proceedings of IAPR Workshop on Computer VisionSpecial Hardware and Industrial Applications, pp. 431–435 (1988)

  26. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  27. Saeedi, J., Ahadi, S.M., Faez, K.: Robust voice activity detection directed by noise classification. Signal Image Video Process 9, 561–572 (2015)

    Article  Google Scholar 

  28. Hiary, H., Alomari, R.S., Saadah, M., Chaudhary, V.: Automated segmentation of stromal tissue in histology images using a voting Bayesian model. Signal Image Video Process 7, 1229–1237 (2013). https://doi.org/10.1007/s11760-012-0393-2

    Article  Google Scholar 

  29. Vega, R., Sanchez-Ante, G., Falcon-Morales, L.E., Sossa, H., Guevara, E.: Retinal vessel extraction using lattice neural networks with dendritic processing. Comput. Biol. Med. 58, 20–30 (2015). https://doi.org/10.1016/j.compbiomed.2014.12.016

    Article  Google Scholar 

  30. Wu, A., Xu, Z., Gao, M., Buty, M., Mollura, D.J.: Deep vessel tracking: A generalized probabilistic approach via deep learning. In: IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 1363–1367. IEEE (2016)

  31. Fraz, M.M., Rudnicka, A.R., Owen, C.G., Barman, S.A.: Delineation of blood vessels in pediatric retinal images using decision trees-based ensemble classification. Int. J. Comput. Assist. Radiol. Surg. 9, 795–811 (2014)

    Article  Google Scholar 

  32. Miri, M.S., Mahloojifar, A.: Retinal image analysis using curvelet transform and multistructure elements morphology by reconstruction. IEEE Trans. Biomed. Eng. 58, 1183–1192 (2011). https://doi.org/10.1109/TBME.2010.2097599

    Article  Google Scholar 

  33. Fraz, M.M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Owen, C.G., Rudnicka, A.R., Barman, S.A.: Retinal vessel extraction using first-order derivative of gaussian and morphological processing. In: International Symposium on Visual Computing, pp. 410–420 (2011)

  34. Qian Zhao, Y., Hong Wang, X., Fang Wang, X., Shih, F.Y.: Retinal vessels segmentation based on level set and region growing. Pattern Recognit. 47, 2437–2446 (2014)

    Article  Google Scholar 

  35. Lázár, I., Hajdu, A.: Segmentation of retinal vessels by means of directional response vector similarity and region growing. Comput. Biol. Med. 66, 209–221 (2015)

    Article  Google Scholar 

  36. Orlando, J.I., Prokofyeva, E., Blaschko, M.B.: A discriminatively trained fully connected conditional random field model for blood vessel segmentation in fundus images. IEEE Trans. Biomed. Eng. 64, 16–27 (2017). https://doi.org/10.1109/TBME.2016.2535311

    Article  Google Scholar 

  37. You, X., Peng, Q., Yuan, Y., Cheung, Y., Lei, J.: Segmentation of retinal blood vessels using the radial projection and semi-supervised approach. Pattern Recognit. 44, 2314–2324 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunder Ali Khowaja.

Ethics declarations

Conflict of interest

Authors of this paper declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1635 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khowaja, S.A., Khuwaja, P. & Ismaili, I.A. A framework for retinal vessel segmentation from fundus images using hybrid feature set and hierarchical classification. SIViP 13, 379–387 (2019). https://doi.org/10.1007/s11760-018-1366-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-018-1366-x

Keywords

Navigation