Skip to main content

Advertisement

Log in

Blind screen content image quality measurement based on sparse feature learning

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Recently, the perceived quality measurement of screen content images (SCIs) has become an active research topic. In this paper, a blind image quality measurement (IQM) metric for SCIs based on the learning of sparse features via dictionary learning is proposed. First, to extract the sparse features, histogram representations from multi-scale local gradient patterns are integrated to form a dictionary. Subsequently, using a pursuit algorithm, the sparse features of the distorted SCIs are efficiently coded by this dictionary. Finally, to obtain the final quality of the distorted SCIs, a machine learning algorithm is utilised to combine the sparse features into a final quality score. The results of extensive simulations conducted show that the proposed blind IQM metric consistently obtains competitive performance and is in line with human beings perceive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Zhu, W., Ding, W., Xu, J., Shi, Y., Yin, B.: Hash-based block matching for screen content coding. IEEE Trans. Multimedia 17(7), 935–944 (2015)

    Article  Google Scholar 

  2. Wang, S., Zhang, X., Liu, X., Zhang, J., Ma, S., Gao, W.: Utility-driven adaptive preprocessing for screen content video compression. IEEE Trans. Multimedia 19(3), 660–667 (2017)

    Article  Google Scholar 

  3. Chen, C.C., Peng, W.H.: Intra line copy for HEVC screen content coding. IEEE Trans. Circuits Syst. Video Technol. 27(7), 1568–1579 (2017)

    Article  Google Scholar 

  4. Wang, S., Gu, K., Zhang, X., Lin, W., Zhang, L., Ma, S., Gao, W.: Subjective and objective quality assessment of compressed screen content images. IEEE J. Emerg. Sel. Top. Circuits Syst. 6(4), 532–543 (2016)

    Article  Google Scholar 

  5. Yang, H., Fang, Y., Yuan, Y., Lin, W.: Subjective quality evaluation of compressed digital compound images. J. Vis. Commun. Image Represent 26, 105–114 (2015)

    Article  Google Scholar 

  6. Yang, H., Fang, Y., Lin, W.: Perceptual quality assessment of screen content images. IEEE Trans. Image Process. 24(11), 4408–4421 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fang, Y., Yan, J., Liu, J., Wang, S., Li, Q., Guo, Z.: Objective quality assessment of screen content images by uncertainty weighting. IEEE Trans. Image Process. 26(4), 2016–2027 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gu, K., Wang, S., Yang, H., Lin, W., Zhai, G., Yang, X., Zhang, W.: Saliency-guided quality assessment of screen content images. IEEE Trans. Multimedia 18(6), 1098–1110 (2016)

    Article  Google Scholar 

  9. Ni, Z., Zeng, H., Ma, L., Hou, J., Chen, J., Ma, K.K.: A Gabor feature-based quality assessment model for the screen content images. IEEE Trans. Image Process. 27(9), 4516–4528 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ni, Z., Ma, L., Zeng, H., Chen, J., Cai, C., Ma, K.K.: ESIM: edge similarity for screen content image quality assessment. IEEE Trans. Image Process. 26(10), 4818–4831 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhang, Y., Chandler, D.M., Mou X.: Quality assessment of screen content images via convolutional-neural-network-based synthetic/natural segmentation. IEEE Trans. Image Process. (2018) https://doi.org/10.1109/TIP.2018.2851390

  12. Gu, K., Zhai, G., Lin, W., Yang, X., Zhang, W.: Learning a blind quality evaluation engine of screen content images. Neurocomputing 196, 140–149 (2016)

    Article  Google Scholar 

  13. Qian, J., Tang, L., Jakhetiya, V., Xia, Z., Gu, K., Lu, H.: Towards efficient blind quality evaluation of screen content images based on edge-preserving filter. Electron. Lett. 53(9), 592–594 (2017)

    Article  Google Scholar 

  14. Gu, K., Zhou, J., Qiao, J.F., Zhai, G., Lin, W., Bovik, A.C.: No-reference quality assessment of screen content pictures. IEEE Trans. Image Process. 26(8), 4005–4018 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Min, X., Ma, K., Gu, K., Zhai, G., Wang, Z., Lin, W.: Unified blind quality assessment of compressed natural, graphic, and screen content images. IEEE Trans. Image Process. 26(11), 5462–5474 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fang, Y., Yan, J., Li, L., Wu, J., Lin, W.: No-reference quality assessment for screen content images with both local and global feature representation. IEEE Trans. Image Process. 27(4), 1600–1610 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wu, J., Li, H., Xia, Z., Xia, Z.: Screen content image quality assessment based on the most preferred structure feature. J. Electron. Imaging 27(3), 033025 (2018)

    Article  Google Scholar 

  18. Lu, N., Li, G.: Blind quality assessment for screen content images by orientation selectivity mechanism. Signal Process. 145, 225–232 (2018)

    Article  Google Scholar 

  19. Mittal, A., Soundararjan, R., Bovik, A.C.: Making a completely blind image quality analyzer. IEEE Signal Process. Lett. 20(3), 209–212 (2013)

    Article  Google Scholar 

  20. Zhang, L., Zhang, L., Bovik, A.C.: A feature-enriched completely blind image quality evaluator. IEEE Trans. Image Process. 24(8), 2579–2591 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Xue, W., Mou, X., Zhang, L., Bovik, A.C., Feng, X.: Blind image quality assessment using joint statistics of gradient magnitude and Laplacian features. IEEE Trans. Image Process. 23(11), 4850–4862 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhou, W., Yu, L., Qiu, W., Zhou, Y., Wu, M.-W.: Local gradient patterns (LGP): an effective local-statistical-feature extraction scheme for no-reference image quality assessment. Inform. Sci. 397–398, 1–14 (2017)

    Article  Google Scholar 

  23. Mahmoudpour, S., Kim, M.: No-reference image quality assessment in complex-shearlet domain. Signal Image Video Process. 10(8), 1–8 (2016)

    Article  Google Scholar 

  24. Alaei, A., Raveaux, R., Conte, D.: Image quality assessment based on regions of interest. Signal Image Video Process. 11(4), 673–680 (2017)

    Article  Google Scholar 

  25. Bianco, S., Celona, L., Napoletano, P., Schettini, R.: On the use of deep learning for blind image quality assessment. Signal Image Video Process. 12(2), 355–362 (2018)

    Article  Google Scholar 

  26. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  27. Ojala, T., Pietikinen, M., Menp, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  28. Yang, A.Y., Zhou, Z., Balasubramanian, A.G., Sastry, S.S., Ma, Y.: Fast \(l_1\)-Minimization algorithms for robust face recognition. IEEE Trans. Image Process. 22(8), 3234–3246 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61502429, 61505176), the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY18F020012), the Zhejiang Open Foundation of the Most Important Subjects, and the China Postdoctoral Science Foundation (Grant No. 2015M581932).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wujie Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Yu, L., Zhou, Y. et al. Blind screen content image quality measurement based on sparse feature learning. SIViP 13, 525–530 (2019). https://doi.org/10.1007/s11760-018-1378-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-018-1378-6

Keywords

Navigation