Skip to main content
Log in

Transcranial Doppler-based modeling of hemodynamics using delay differential equations

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Approximately 40,000 people suffer brain aneurysm rupture and 2.5 million suffer a traumatic brain injury (TBI) each year in the USA. Cerebral vasospasm (CV) occurs as a complication of brain hemorrhage resulting from cerebral aneurysm rupture and TBI. CV causes further cerebral injury and is the primary cause of death and disability in aneurysmal hemorrhage and TBI. Consequently, it is critical to design a model for diagnosing and analyzing the abnormal cerebral blood flow velocity hemodynamics associated with CV. By generating such a model, it would be possible to design machine learning mechanisms for earlier prediction of CV. In previous studies, cerebrovascular models of blood flow behavior for different disorders were established. Unfortunately, those models are disorder specific and have too many parameters to tune. We have established a model for the signal envelope of the cerebral blood flow velocity that was produced by transcranial Doppler (TCD). We have applied it to simulate CV behavior, and it is general enough to be applied to other cerebrovascular disorders. The model is based on the delay differential equation as a representative modeling equation for three diagnostic categories: control (no CV or hyperemia), hyperemia, and CV. The model has only four tunable parameters and allows switching from one case to another by changing those parameters. After validation of the model, the generated envelope signals compared to spectrograms recorded by transcranial Doppler, demonstrated good concordance in all three categories between the model and signals acquired with TCD. This result could be used for modeling cerebral blood velocity abnormalities and lead to early detection of CV in TBI and aneurysmal hemorrhage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dorsch, N.: A clinical review of cerebral vasospasm and delayed ischemia following aneurysm rupture. Acta Neurochir. 110, 5–6 (2011)

    Google Scholar 

  2. Shahlaie, K., et al.: Posttraumatic vasospasm detected by continuous brain tissue oxygen monitoring: treatment with intra-arterial verapamil and balloon angioplasty. Neurocrit. Care 10, 61–69 (2009)

    Article  Google Scholar 

  3. National hospital discharge survey (2010)

  4. National hospital ambulatory medical care survey (2010)

  5. https://www.cdc.gov/traumaticbraininjury/basics.html. Accessed 10 Oct 2018

  6. Macdonald, R.L., Pluta, R.M., Zhang, J.H.: Cerebral vasospasm after subarachnoid hemorrhage: the emerging revolution. Nat. Clin. Pract. Neurol. 3(5), 256–263 (2007)

    Article  Google Scholar 

  7. Sabayan, B., et al.: Cerebrovascular hemodynamics in Alzheimer’s disease and vascular dementia: a meta-analysis of transcranial Doppler studies. Ageing Res Rev. 11, 271–277 (2012)

    Article  Google Scholar 

  8. Roje-Bedekovic, M., Bosnar-Puretic, M., Lovrencic-Huzjan, A., Demarin, V.: Cerebrovascular evoked response to repetitive visual stimulation in severe carotid disease—functional transcranial Doppler study. Acta Clin. Croat. 49, 267–274 (2010)

    Google Scholar 

  9. Ferini-Strambi, L., Walters, A.S., Sica, D.: The relationship among restless legs syndrome (Willis–Ekbom disease), hypertension, cardiovascular disease, and cerebrovascular disease. J. Neurol. 261, 1051–1068 (2014)

    Article  Google Scholar 

  10. Kienreich, K., et al.: Vitamin D, arterial hypertension & cerebrovascular disease. Indian J. Med. Res. 137, 669–679 (2013)

    Google Scholar 

  11. Berg, P., et al.: Cerebral blood flow in a healthy Circle of Willis and two intracranial aneurysms: computational fluid dynamics versus four-dimensional phase-contrast magnetic resonance imaging. J. Biomech. Eng. (2014). https://doi.org/10.1115/1.4026108

    Google Scholar 

  12. Lee, Y.J., Rhim, Y.C., Choi, M., Chung, T.S.: Validation of compliance zone at cerebral arterial bifurcation using phantom and computational fluid dynamics simulation. J. Comput. Assist. Tomogr. 38, 480–484 (2014)

    Article  Google Scholar 

  13. Olufsen, M.S., Nadim, A., Lipsitz, L.A.: Dynamics of cerebral blood flow regulation explained using a lumped parameter model. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282, 611–622 (2002)

    Article  Google Scholar 

  14. Ursino, M.: Mechanisms of cerebral blood flow regulation. Crit. Rev. Biomed. Eng. 18, 255–288 (1991)

    Google Scholar 

  15. Neidlin, M., Steinseifer, U., Kaufmann, T.A.: A multiscale 0-D/3-D approach to patient-specific adaptation of a cerebral autoregulation model for computational fluid dynamics studies of cardiopulmonary bypass. J. Biomech. 47, 1777–1783 (2014)

    Article  Google Scholar 

  16. Russin, J., et al.: Computational fluid dynamics to evaluate the management of a giant internal carotid artery aneurysm. World Neurosurg. (2014). https://doi.org/10.1016/j.wneu.2014.12.038

    Google Scholar 

  17. Liu, B., et al.: A Non-invasive method to assess cerebral perfusion pressure in geriatric patients with suspected cerebrovascular disease. PLoS ONE 10, e0120146 (2015)

    Article  Google Scholar 

  18. Lui, B., Li, Q., Wang, J., Xiang, H., Ge, H., Wang, H., Xie, P.: A highly similar mathematical model for cerebral blood flow velocity in geriatric patients with suspected cerebrovascular disease. Sci. Rep. 5, 15771 (2015)

    Article  Google Scholar 

  19. Panunzi, S., D’Orsil, L., Iacoviello, D., De Gaetano, A.: A Stochastic delay differential model of cerebral autoregulation. PLoS ONE 10(4), e011845 (2015)

    Article  Google Scholar 

  20. Kumar, G., Elzaafarany, K., Nakhmani, A.: Machine learning approach to automating detection of cerebral vasospasm using transcranial doppler monitoring. In: 142nd Annual Meeting of the American Neurological Association, San Diego, CA, USA, 15–17 October 2017

  21. Elzaafarany, K., Kumar, G., Aly, M. H., Nakhmani, A.: Sound analysis and machine learning in noninvasive classification of neurological conditions. In: Society for Design and Process Science (SDPS 2017), Birmingham, Alabama, USA, 5–9 November 2017

  22. Kumar, G., Dumitrascu, O.M., Chiang, C.C., O’Carroll, C.B., Alexandrov, A.V.: Prediction of delayed cerebral ischemia with cerebral angiography: a meta-analysis. Neurocrit. Care 10, 2 (2018). https://doi.org/10.1007/s12028-018-0572-2

    Google Scholar 

  23. Sandra, R.F.S.M.G., Marcelo, A.S.: An analysis of heart rhythm dynamics using a three-coupled oscillator model. Chaos Solitons Fractals 41, 2553–2565 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Signorini, M.G., Bernardo, D.: Simulation of heartbeat dynamics: a non-linear model. Int. J. Bifurc. Chaos 8, 1725–1731 (1998)

    Article  MATH  Google Scholar 

  25. Bernardo, D., Signorini, M.G.: A model of two non-linear coupled oscillators for the study of heartbeat dynamics. Int. J. Bifurc. Chaos 8, 1975–1985 (1998)

    Article  MATH  Google Scholar 

  26. Brandt, M.E., Wang, G., Shih, H.T.: Feedback control of a nonlinear dual- oscillator heartbeat model. In: Chen, G., Hill, D.J., Yu, X. (eds.) Bifurcation Control, pp. 265–273. Springer, Berlin (2003)

    Google Scholar 

  27. Sprott, J.C.: Chaos and Time-Series Analysis. Oxford University Press, Oxford (2006)

    Google Scholar 

  28. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  29. Santos, A.M., Lopes, S., Viana, R.: Rhythm synchronization and chaotic modulation of coupled Van der Pol oscillators in a model for the heartbeat. Phys. A 338(3–4), 335–355 (2004)

    Article  MathSciNet  Google Scholar 

  30. Campbell, S.R., Wang, D.: Relaxation oscillators with time delay coupling. Phys. D 111, 151–178 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. Imamasu, K., Matoba, C., Suemitsu, H., Matsuo, T.: Parameter estimation of heart rhythm dynamics using adaptive observer. In: Proceedings of the International Conference on Advanced Mechatronic Systems, Kumamoto, Japan, pp 10–12 (2014)

  32. Gomes, J.M., Santos, R.W., Cherry, E.M.: Alternans promotion in cardiac electrophysiology models by delay differential equations. Chaos 27, 093915 (2017)

    Article  MathSciNet  Google Scholar 

  33. Shampine, L.F., Thompson, S.: Solving DDEs in MATLAB. Appl. Numer. Math. 37, 441–458 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Khaled Elzaafarany thanks the Arab Academy for Science and Technology for funding assistance in pursuing his Ph.D. dissertation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Elzaafarany.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elzaafarany, K., Kumar, G. & Nakhmani, A. Transcranial Doppler-based modeling of hemodynamics using delay differential equations. SIViP 13, 667–673 (2019). https://doi.org/10.1007/s11760-018-1395-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-018-1395-5

Keywords

Navigation