Skip to main content
Log in

Discriminative transfer learning via local and global structure preservation

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The current success of supervised learning is limited on large amounts of labeled training data. Transfer learning aims to learn an adaptive classifier for the unlabeled target domain data from the labeled source domain data, which is sampled from diverse probability distributions under changing conditions. Most previous works focus on how to reduce the distribution discrepancy between two involved domains, or exploit the shared common feature by preserving the local geometric structure of samples. In this paper, we propose a modified method jointly optimizing the local and global structure preservation. The main idea is to explore common features with manifold regularization. Discriminative repulsive force model is used to improve maximum mean discrepancy, which keeps discriminative property in the local sense via labeled source domain data and alleviates the global distribution discrepancy of the different domains. Quantitative results indicate that our method performs better than other methods on 16 cross-domain experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Murphy, K.P.: Machine Learning: a Probabilistic Perspective. MIT press, Cambridge (2012)

    MATH  Google Scholar 

  2. Wei, Z., Chu, Y., Zhao, L.: An effective two-dimensional linear discriminant analysis with locality preserving approach for image recognition. Signal Image Video Process. 11(8), 1577–1584 (2017)

    Article  Google Scholar 

  3. Tang, Z., Wu, X., Leng, X., Chen, W.: A fast face recognition method based on fractal coding. Signal Image Video Process. 11(7), 1221–1228 (2017)

    Article  Google Scholar 

  4. Ghosn, J., Bengio, Y.: Bias learning, knowledge sharing. IEEE Trans. Neural Netw. 14(4), 748–765 (2003)

    Article  Google Scholar 

  5. Bishop, M.C.: Pattern recognition. Mach. Learn. 128, 1–58 (2006)

    Google Scholar 

  6. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  7. Long, M., Wang, J., Ding, G., Pan, S.J., Philip, S.Y.: Adaptation regularization: a general framework for transfer learning. IEEE Trans. Knowl. Data Eng. 26(5), 1076–1089 (2014)

    Article  Google Scholar 

  8. Zhuang, F., Luo, P., Shen, Z., He, Q., Xiong, Y., Shi, Z., Xiong, H.: Mining distinction and commonality across multiple domains using generative model for text classification. IEEE Trans. Knowl. Data Eng. 24(11), 2025–2039 (2012)

    Article  Google Scholar 

  9. Long, M., Wang, J., Ding, G., Shen, D., Yang, Q.: Transfer learning with graph co-regularization. IEEE Trans. Knowl. Data Eng. 26(7), 1805–1818 (2014)

    Article  Google Scholar 

  10. Pan, S.J., Tsang, I.W., Kwok, J.T., Yang, Q.: Domain adaptation via transfer component analysis. IEEE Trans. Neural Netw. 22(2), 199 (2011)

    Article  Google Scholar 

  11. Rohrbach, M., Stark, M., Szarvas, G., Gurevych, I., Schiele, B.: What helps where and why? semantic relatedness for knowledge transfer. In: CVPR, pp. 910–917 (2010)

  12. Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning. J. Big Data 3(1), 1–40 (2016)

    Article  Google Scholar 

  13. Chattopadhyay, R., Ye, J., Sun, P., Fan, W., Davidson, I.: Multi-source domain adaptation and its application to early detection of fatigue. SIGKDD 6(4), 18 (2011)

    Google Scholar 

  14. Duan, L., Xu, D., Tsang, I.W.: Domain adaptation from multiple sources: a domain-dependent regularization approach. IEEE Trans. Neural Netw. Learn Syst. 23(3), 504–18 (2012)

    Article  Google Scholar 

  15. Tommasi, T., Orabona, F., Caputo, B.: Learning categories from few examples with multi model knowledge transfer. IEEE Trans. Pattern Anal. Mach. Intell. 36(5), 928–941 (2014)

    Article  Google Scholar 

  16. Pan, S.J., Kwok, J.T., Yang, Q.: Transfer learning via dimensionality reduction. In: AAAI, pp. 677–682 (2008)

  17. Jiang, M., Huang, W., Huang, Z., Yen, G.G.: Integration of global and local metrics for domain adaptation learning via dimensionality reduction. IEEE Trans. Cybern. 47(1), 38–51 (2017)

    Article  Google Scholar 

  18. Long, M., Cao, Y., Wang, J., Jordan, M.I.: Learning transferable features with deep adaptation networks. In: Proceedings of International Conference on Machine Learning (ICML) (2015)

  19. Long, M., Wang, J., Ding, G., Sun, J., Yu, P.S.: Transfer feature learning with joint distribution adaptation. In: ICCV, pp. 2200–2207 (2013)

  20. Long M., Zhu, H., Wang, J., Jordan, M.I.: Unsupervised domain adaptation with residual transfer networks. In: Advances in Neural Information Processing Systems, pp. 136–144 (2016)

  21. Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7, 2399–2434 (2006)

    MathSciNet  MATH  Google Scholar 

  22. Ge, Q., Shen, F., Jing, X.Y., Wu, F., Xie, S.P., Yue, D., Li, H.B.: Active contour evolved by joint probability classification on riemannian manifold. Signal Image Video Process. 10(7), 1257–1264 (2016)

    Article  Google Scholar 

  23. Liu, X., Wang, L., Zhang, J., Yin, J., Liu, H.: Global and local structure preservation for feature selection. IEEE Trans. Neural Netw. Learn. Syst. 25(6), 1083–1095 (2014)

    Article  Google Scholar 

  24. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugen. 7(2), 179–188 (1936)

    Article  Google Scholar 

  25. Jiang, M., Huang, W., Huang, Z., Yen, G.G.: Integration of global and local metrics for domain adaptation learning via dimensionality reduction. IEEE Trans. Cybern. 47(1), 38–51 (2017)

    Article  Google Scholar 

  26. Borgwardt, K.M., Gretton, A., Rasch, M.J., Kriegel, H.P., Schölkopf, B., Smola, A.J.: Integrating structured biological data by kernel maximum mean discrepancy. Bioinformatics 22(14), e49–e57 (2006)

    Article  Google Scholar 

  27. Gretton, A., Borgwardt, K.M., Rasch, M., Schölkopf, B., Smola, A.J.: A kernel method for the two-sample-problem. Adv. Neural Inf. Process. Syst. 19, 513 (2007)

    MATH  Google Scholar 

  28. Zhao, Z., Wang, L., Liu, H., Ye, J.: On similarity preserving feature selection. IEEE Trans. Knowl. Data Eng. 25(3), 619–632 (2013)

    Article  Google Scholar 

  29. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: ECCV, pp. 213–226 (2010)

  30. Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset. (2007)

  31. LeCun, Y., Cortes, C.: Mnist Handwritten Digit Database. AT&T Labs, Atlanta (2010)

    Google Scholar 

  32. Nene, S.A., Nayar, S.K., Murase, H.: Columbia object image library (coil-20). Technical Report CUCS-005-96 (1996)

  33. Long, M., Wang, J., Ding G., S.J., Yu, P.S.: Transfer joint matching for unsupervised domain adaptation. In: CVPR, pp. 1410–1417 (2014)

  34. Gong, B., Shi, Y., Sha, F., Grauman, K.: Geodesic flow kernel for unsupervised domain adaptation. In: CVPR, (2012)

Download references

Acknowledgements

This work was supported by the Chinese Natural Science Foundation (No. 61673262), National Basic Research Program of China (2014CB744903) and Aerospace Sci.and Tech. Foundation (No. 15GFZ-JJ02-07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongya Tuo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Tuo, H., Wang, J. et al. Discriminative transfer learning via local and global structure preservation. SIViP 13, 753–760 (2019). https://doi.org/10.1007/s11760-018-1405-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-018-1405-7

Keywords

Navigation