Skip to main content
Log in

Contour detection based on anisotropic edge strength and hierarchical superpixel contrast

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Contour detection is a fundamental problem in computer vision, yet existing methods usually suffer from the interference of noise and textures. To address this problem, we present an unsupervised contour detection method based on anisotropic edge strength and hierarchical superpixel contrast. The anisotropic edge strength is obtained through the first derivative of anisotropic Gaussian kernels which incorporates an adaptive anisotropy factor. The anisotropic kernel improves the robustness to noise, while the adaptive anisotropic factor attenuates the anisotropy stretch effect. Using a method based on region merging, we obtain a hierarchical set of superpixel maps and thus compute superpixel contrast maps at different hierarchy levels. Consequently, the contour strength map is obtained by multiplying the anisotropic edge strength map by the average of the hierarchical superpixel contrast maps. Experimental results on two publicly available datasets validate the superiority of the proposed method over the competing methods. On the Berkeley Segmentation Dataset & Benchmark 300 and the Berkeley Segmentation Dataset & Benchmark 500, our method obtains (optimal dataset scale) F-measure values of 0.63 and 0.67, respectively, an improvement of at least 0.06 over the competing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  2. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)

    Article  Google Scholar 

  3. Avots, E., Arslan, H.S., Valgma, L., Gorbova, J., Anbarjafari, G.: A new kernel development algorithm for edge detection using singular value ratios. Signal Image Video Process. 12(7), 1301–1309 (2018)

    Article  Google Scholar 

  4. Bao, P., Zhang, L., Wu, X.: Canny edge detection enhancement by scale multiplication. IEEE Trans. Pattern Anal. Mach. Intell. 27(9), 1485–1490 (2005)

    Article  Google Scholar 

  5. Candes, E., Demanet, L., Donoho, D., Ying, L.: Fast discrete curvelet transforms. Multiscale Model. Simul. 5(3), 861–899 (2006)

    Article  MathSciNet  Google Scholar 

  6. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  7. Dollár, P., Zitnick, C.L.: Fast edge detection using structured forests. IEEE Trans. Pattern Anal. Mach. Intell. 37(8), 1558–1570 (2015)

    Article  Google Scholar 

  8. El Jaafari, I., El Ansari, M., Koutti, L.: Fast edge-based stereo matching approach for road applications. Signal Image Video Process. 11(2), 267–274 (2017)

    Article  Google Scholar 

  9. Fang, L., Li, S., Kang, X., Benediktsson, J.A.: Spectral-spatial classification of hyperspectral images with a superpixel-based discriminative sparse model. IEEE Trans. Geosci. Remote Sensing 53(8), 4186–4201 (2015)

    Article  Google Scholar 

  10. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59(2), 167–181 (2004)

    Article  Google Scholar 

  11. Grigorescu, C., Petkov, N., Westenberg, M.A.: Contour detection based on nonclassical receptive field inhibition. IEEE Trans. Image Process. 12(7), 729–739 (2003)

    Google Scholar 

  12. Hu, Z., Wu, Z., Zhang, Q., Fan, Q., Xu, J.: A spatially-constrained color-texture model for hierarchical VHR image segmentation. IEEE Geosci. Remote Sens. Lett. 10(1), 120–124 (2013)

    Article  Google Scholar 

  13. Koschan, A., Abidi, M.: Detection and classification of edges in color images. IEEE Signal Process. Mag. 22(1), 64–73 (2005)

    Article  Google Scholar 

  14. Levinshtein, A., Sminchisescu, C., Dickinson, S.: Optimal contour closure by superpixel grouping. In: Proceedings of the European Conference on Computer Vision, pp. 480–493 (2010)

    Chapter  Google Scholar 

  15. Li, Y., Wang, S., Tian, Q., Ding, X.: A survey of recent advances in visual feature detection. Neurocomputing 149, 736–751 (2015)

    Article  Google Scholar 

  16. Lindeberg, T.: Edge detection and ridge detection with automatic scale selection. Int. J. Comput. Vis. 30(2), 117–156 (1998)

    Article  Google Scholar 

  17. Lopez-Molina, C., De Baets, B., Bustince, H.: Quantitative error measures for edge detection. Pattern Recognit. 46(4), 1125–1139 (2013)

    Article  Google Scholar 

  18. Lopez-Molina, C., De Baets, B., Bustince, H., Sanz, J., Barrenechea, E.: Multiscale edge detection based on Gaussian smoothing and edge tracking. Knowl. Based Syst. 44, 101–111 (2013)

    Article  Google Scholar 

  19. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the IEEE International Conference on Computer Vision, vol. 2, pp. 416–423 (2001)

  20. Martin, D.R., Fowlkes, C.C., Malik, J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans. Pattern Anal. Mach. Intell. 26(5), 530–549 (2004)

    Article  Google Scholar 

  21. Mun, J., Jang, Y., Kim, J.: Propagated guided image filtering for edge-preserving smoothing. Signal Image Video Process. 12(6), 1165–1172 (2018)

    Article  Google Scholar 

  22. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  23. Rosenfeld, A., Thurston, M.: Edge and curve detection for visual scene analysis. IEEE Trans. Comput. C–20(5), 562–569 (1971)

    Article  Google Scholar 

  24. Shui, P., Wang, F.: Anti-impulse-noise edge detection via anisotropic morphological directional derivatives. IEEE Trans. Image Process. 26(10), 4962–4977 (2017)

    Article  MathSciNet  Google Scholar 

  25. Shui, P., Zhang, W.: Noise-robust edge detector combining isotropic and anisotropic Gaussian kernels. Pattern Recognit. 45(2), 806–820 (2012)

    Article  Google Scholar 

  26. Sobel, I.: Camera models and machine perception. Ph.D. thesis, Stanford University (1970)

  27. Stutz, D., Hermans, A., Leibe, B.: Superpixels: an evaluation of the state-of-the-art. Comput. Vis. Image Underst. 166, 1–27 (2018)

    Article  Google Scholar 

  28. Wang, F., Shui, P.: Noise-robust color edge detector using gradient matrix and anisotropic Gaussian directional derivative matrix. Pattern Recognit. 52, 346–357 (2016)

    Article  Google Scholar 

  29. Wang, G., De Baets, B.: Edge detection based on the fusion of multiscale anisotropic edge strength measurements. In: Proceedings of the Conference of the European Society for Fuzzy Logic and Technology, vol. 3, pp. 530–536 (2017)

  30. Wang, G., Lopez-Molina, C., De Baets, B.: Blob reconstruction using unilateral second order Gaussian kernels with application to high-ISO long-exposure image denoising. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4817–4825 (2017)

  31. Wang, G., Lopez-Molina, C., de Vidal-Diez Ulzurrun, G., De Baets, B.: Noise-robust line detection using normalized and adaptive second-order anisotropic Gaussian kernels. Signal Process. 160, 252–262 (2019)

    Article  Google Scholar 

  32. Wei, X., Yang, Q., Gong, Y., Ahuja, N., Yang, M.: Superpixel hierarchy. IEEE Trans. Image Process. 27(10), 4838–4849 (2018)

    Article  MathSciNet  Google Scholar 

  33. Xie, S., Tu, Z.: Holistically-nested edge detection. Int. J. Comput. Vis. 125, 3–18 (2017)

    Article  MathSciNet  Google Scholar 

  34. Xu, Q., Varadarajan, S., Chakrabarti, C., Karam, L.J.: A distributed Canny edge detector: algorithm and FPGA implementation. IEEE Trans. Image Process. 23(7), 2944–2960 (2014)

    Article  MathSciNet  Google Scholar 

  35. Yang, K., Li, C., Li, Y.: Multifeature-based surround inhibition improves contour detection in natural images. IEEE Trans. Image Process. 23(12), 5020–5032 (2014)

    Article  MathSciNet  Google Scholar 

  36. You, X., Du, L., Cheung, Ym, Chen, Q.: A blind watermarking scheme using new nontensor product wavelet filter banks. IEEE Trans. Image Process. 19(12), 3271–3284 (2010)

    Article  MathSciNet  Google Scholar 

  37. Zhang, H., Fritts, J.E., Goldman, S.A.: Image segmentation evaluation: a survey of unsupervised methods. Comput. Vis. Image Underst. 110(2), 260–280 (2008)

    Article  Google Scholar 

  38. Zhang, W., Zhao, Y., Breckon, T.P., Chen, L.: Noise robust image edge detection based upon the automatic anisotropic Gaussian kernels. Pattern Recognit. 63, 193–205 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., De Baets, B. Contour detection based on anisotropic edge strength and hierarchical superpixel contrast. SIViP 13, 1657–1665 (2019). https://doi.org/10.1007/s11760-019-01517-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-019-01517-1

Keywords

Navigation