Skip to main content
Log in

An improved model for no-reference image quality assessment and a no-reference video quality assessment model based on frame analysis

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

No-reference image quality assessment (NR-IQA) uses only the test image for its quality assessment, and as video is essentially comprised of image frames with additional temporal dimension, video quality assessment (VQA) requires a thorough understanding of image quality assessment metrics and models. Therefore, in order to identify features that deteriorate video quality, a fundamental analysis of spatial and temporal artifacts with respect to individual video frames needs to be performed. Existing IQA and VQA metrics are primarily for capturing few distortions and hence may not be good for all types of images and videos. In this paper, we propose an NR-IQA model by combining existing three methods (namely NIQE, BRISQUE and BLIINDS-II) using multi-linear regression. We also present a holistic no-reference video quality assessment (NR-VQA) model by exploring quantification of certain distortions like ringing, frame difference, blocking, clipping and contrast in video frames. For the proposed NR-IQA model, the results represent improved performance as compared to the state-of-the-art methods and it requires very low fraction of samples for training to provide a consistent accuracy over different training-to-testing ratios. The performance of NR-VQA model is examined using a simple neural network model to attain high value of goodness of fit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lin, W., Kuo, C.J.: Perceptual visual quality metrics: a survey. J. Vis. Commun. Image Represent. 22(4), 297–312 (2011)

    Article  Google Scholar 

  2. Gao, X., Lu, W., Tao, D., Li, X.: Image quality assessment and human visual system. Vis. Commun. Image Process. 7744, 77440Z-1–77440Z-10 (2010)

    Google Scholar 

  3. Kamble, V., Bhurchandi, K.M.: No-reference image quality assessment algorithms: a survey. Opt. Int. J. Light Electron Opt. 126(11–12), 1090–1097 (2015)

    Article  Google Scholar 

  4. Wang, T., Zhang, L., Jia, H.: An effective general-purpose NR-IQA model using natural scene statistics (NSS) of the luminance relative order. Sig. Process. Image Commun. 71, 100–109 (2019)

    Article  Google Scholar 

  5. Gu, K., Zhou, J., Zhai, G., Lin, W., Bovik, A.C.: No-reference quality assessment of screen content pictures. IEEE Trans. Image Process. 26(8), 4005–4017 (2017)

    Article  MathSciNet  Google Scholar 

  6. Chen, M.J., Bovik, A.C.: No-reference image blur assessment using multiscale gradient. EURASIP J. Image Video Process. 1, 1–11 (2011)

    Article  Google Scholar 

  7. Zhu, X., Milanfar, P.: A no-reference sharpness metric sensitive to blur and noise. In: International Workshop on Quality of Multimedia Experience, pp. 64–69 (2009)

  8. Sazzad, Z.M.P., Kawayoke, Y., Horita, Y.: No-reference image quality assessment for JPEG2000 based on spatial features. Sig. Process. Image Commun. 23(4), 257–268 (2008)

    Article  Google Scholar 

  9. Sheikh, H.R., Bovik, A.C., Cormack, L.K.: No-reference quality assessment using natural scene statistics: JPEG2000. IEEE Trans. Image Process. 14(11), 1918–1927 (2005)

    Article  Google Scholar 

  10. Wang, Z., Bovik, A.C., Evans, B.L.: Blind measurement of blocking artifacts in images. In: Proceedings of the IEEE International Conference on Image Processing, pp. 981–984 (2000)

  11. Moorthy, A.K., Bovik, A.C.: A two-step framework for constructing blind image quality indices. IEEE Signal Process. Lett. 17(5), 513–516 (2010)

    Article  Google Scholar 

  12. Moorthy, A.K., Bovik, A.C.: Blind image quality assessment: from natural scene statistics to perceptual quality. IEEE Trans. Image Process. 20(12), 3350–3364 (2011)

    Article  MathSciNet  Google Scholar 

  13. Saad, M., Bovik, A.C., Charrier, C.: Blind image quality assessment: a natural scene statistics approach in the DCT domain. IEEE Trans. Image Process. 21(8), 3339–3352 (2012)

    Article  MathSciNet  Google Scholar 

  14. Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)

    Article  MathSciNet  Google Scholar 

  15. Mittal, A., Soundararajan, R., Bovik, A.C.: Making a completely blind image quality analyzer. IEEE Signal Process. Lett. 22(3), 209–212 (2013)

    Article  Google Scholar 

  16. Bosse, S., Maniry, D., Muller, K.R., Wiegand, T., Samek, W.: Deep neural networks for no-reference and full-reference image quality assessment. IEEE Trans. Image Process. 27(1), 206–219 (2018)

    Article  MathSciNet  Google Scholar 

  17. Bianco, S., Celona, L., Napoletano, P., Schettini, R.: On the use of deep learning for blind image quality assessment. SIViP 12(2), 355–362 (2018)

    Article  Google Scholar 

  18. Suthaharan, S.: Perceptual quality metric for digital video coding. IET Electron. Lett. 39(5), 431–433 (2003)

    Article  Google Scholar 

  19. Muijs, R., Kirenko, I.: A no-reference blocking artifact measure for adaptive video processing. In: Proceedings of European Signal Processing Conference, pp. 1–4 (2005)

  20. Ou, Y.F., Ma, Z., Liu, T., Wang, Y.: Perceptual quality assessment of video considering both frame rate and quantization artifacts. IEEE Trans. Circuits Syst. Video Technol. 21(3), 286–298 (2011)

    Article  Google Scholar 

  21. Ong, E.P., Wu, S., Loke, M.H., Rahardja, S., Tay, J., Tan, C.K., Huang, L.: Video quality monitoring of streamed videos. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1153–1156 (2009)

  22. Keimel, C., Oelbaum, T., Diepold, K.: No-reference video quality evaluation for high-definition video. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1145–1148 (2009)

  23. Saad, M.A., Bovik, A.C.: Blind quality assessment of videos using a model of natural scene statistics and motion coherency. In: IEEE Conference Record of the 46th Asilomar Conference on Signals, Systems and Computers, pp. 332–336 (2012)

  24. Li, X., Guo, Q., Lu, X.: Spatiotemporal statistics for video quality assessment. IEEE Trans. Image Process. 25(7), 3329–3342 (2016)

    Article  MathSciNet  Google Scholar 

  25. Zhang, Y., Gao, X., He, L., Lu, W., He, R.: Objective video quality assessment combining transfer learning with CNN. IEEE Trans. Neural Netw. Learn. Syst. (2019). https://doi.org/10.1109/TNNLS.2018.2890310

    Article  Google Scholar 

  26. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  27. Wu, H.R., Yuen, M.: Generalized block-edge impairment metric (GBIM) for video coding. IEEE Signal Process. Lett. 4(11), 317–320 (1997)

    Article  Google Scholar 

  28. Turkowski, K.: Anti-aliasing through the use of coordinate transformations. ACM Trans. Graph. 1(3), 215–234 (1982)

    Article  Google Scholar 

  29. Farrell, J.E., Benson, B.L., Haynie, C.R.: Predicting flicker thresholds for video display terminals. Proc. SID 28(4), 449–453 (1987)

    Google Scholar 

  30. Demuth, H., Beale, M.: Matlab Neural Network Toolbox User’s Guide Version 6. The MathWorks Inc., Natick (2009)

    Google Scholar 

  31. Sheikh, H.R., Sabir, M.F., Bovik, A.C.: A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Trans. Image Process. 15(11), 3440–3451 (2006)

    Article  Google Scholar 

  32. Seshadrinathan, K., Soundararajan, R., Bovik, A.C., Cormack, L.K.: Study of subjective and objective quality assessment of video. IEEE Trans. Image Process. 19(6), 1427–1441 (2010)

    Article  MathSciNet  Google Scholar 

  33. Moré, J.J.: The Levenberg–Marquardt algorithm: implementation and theory. In: Watson, G.A. (eds.) Numerical Analysis. Lecture Notes in Mathematics, vol. 630, pp. 105–116. Springer, Berlin (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neetika Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rohil, M.K., Gupta, N. & Yadav, P. An improved model for no-reference image quality assessment and a no-reference video quality assessment model based on frame analysis. SIViP 14, 205–213 (2020). https://doi.org/10.1007/s11760-019-01543-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-019-01543-z

Keywords

Navigation