Skip to main content
Log in

NLTV-Gabor-based models for image decomposition and denoising

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

By using the nonlocal total variation (NLTV) as the regularization and Gabor functions as the fidelity, this paper proposes two novel models for image decomposition and denoising. The presented models closely incorporate the advantages of the NLTV and Gabor wavelets-based methods. These improvements are aimed at overcoming the drawbacks of staircase artifacts and loss of edge details caused by the traditional variational frameworks. Furthermore, on the basis of Chambolle’s projection algorithm, we introduce two extremely efficient numerical methods to solve the resulting optimization problems. Finally, compared with several popular and powerful numerical methods, this article confirms the superiorities of the developed strategies for image decomposition and denoising in terms of visual quality and quantitative assessments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jakhetiya, V., Gu, K., Lin, W., Li, Q., Jaiswal, S.P.: A prediction backed model for quality assessment of screen content and 3-D synthesized images. IEEE Trans. Ind. Inform. 14, 652–660 (2018)

    Article  Google Scholar 

  2. Gu, K., Lin, W., Zhai, G., Yang, X., Zhang, W., Chen, C.W.: No-reference quality metric of contrast-distorted images based on information maximization. IEEE Trans. Cybern. 47, 4559–4565 (2017)

    Article  Google Scholar 

  3. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MathSciNet  Google Scholar 

  4. Osher, S., Sole, A., Vese, L.A.: Image decomposition and restoration using total variation minimization and the \(H^{-1}\) norm. Multiscale Model. Simul. 1, 349–370 (2003)

    Article  MathSciNet  Google Scholar 

  5. Aujol, J.F., Gilboa, G.: Constrained and SNR-based solutions for TV-Hilbert space image denoising. J. Math. Imaging Vis. 26, 217–237 (2006)

    Article  MathSciNet  Google Scholar 

  6. Aujol, J.F., Gilboa, G., Chan, T., Osher, S.: Structure-texture image decomposition modeling, algorithms and parameter selection. Int. J. Comput. Vis. 67, 111–136 (2006)

    Article  Google Scholar 

  7. Chan, T., Marquina, A., Mulet, P.: High-order total variation-based image restoration. SIAM J. Sci. Comput. 22, 503–516 (2000)

    Article  MathSciNet  Google Scholar 

  8. Lysaker, M., Lundervold, A., Tai, X.-C.: Noise removal using fourth order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Trans. Image Process. 12, 1579–1590 (2003)

    Article  Google Scholar 

  9. Steidl, G.: A note on the dual treatment of higher-order regularization functionals. Computing 76, 135–148 (2006)

    Article  MathSciNet  Google Scholar 

  10. Liu, X.: Efficient algorithms for hybrid regularizers based image denoising and deblurring. Comput. Math. Appl. 69, 675–687 (2015)

    Article  MathSciNet  Google Scholar 

  11. Lysaker, M., Tai, X.-C.: Iterative image restoration combining total variation minimization and a second-order functional. Int. J. Comput. Vis. 66, 5–18 (2006)

    Article  Google Scholar 

  12. Buades, A., Coll, B., Morel, J.M.: On image denoising methods. Multiscale Model. Simul. 4, 490–530 (2005)

    Article  MathSciNet  Google Scholar 

  13. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7, 1005–1028 (2009)

    Article  MathSciNet  Google Scholar 

  14. Lou, Y., Zhang, X., Osher, S., Bertozzi, A.: Image recovery via nonlocal operators. J. Sci. Comput. 42, 185–197 (2010)

    Article  MathSciNet  Google Scholar 

  15. Zhang, X., Burger, M., Bresson, X., Osher, S.: Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. SIAM J. Imaging Sci. 3, 253–276 (2010)

    Article  MathSciNet  Google Scholar 

  16. Liu, X., Huang, L.: A new nonlocal total variation regularization algorithm for image denoising. Math. Comput. Simul. 97, 224–233 (2014)

    Article  MathSciNet  Google Scholar 

  17. Bonny, S., Chanu, Y.J., Singh, K.M.: Speckle reduction of ultrasound medical images using Bhattacharyya distance in modified non-local mean filter. Signal Image Video Process. 13, 299–305 (2019)

    Article  Google Scholar 

  18. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3, 492–526 (2010)

    Article  MathSciNet  Google Scholar 

  19. Adam, T., Paramesran, R.: Image denoising using combined higher order non-convex total variation with overlapping group sparsity. Multidim. Syst. Sign. Process. 30, 503–527 (2019)

    Article  MathSciNet  Google Scholar 

  20. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, New Delhi (1998)

    MATH  Google Scholar 

  21. Riaz, F., Hassan, A., Rehman, S., Qamar, U.: Texture classification using rotation- and scale-invariant Gabor texture features. IEEE Signal Process. Lett. 20, 607–610 (2013)

    Article  Google Scholar 

  22. Liang, J., Hou, Z., Chen, C., Xu, X.: Supervised bilateral two-dimensional locality preserving projection algorithm based on Gabor wavelet. Signal Image Video Process. 10, 1441–1448 (2016)

    Article  Google Scholar 

  23. Aujol, J.F., Aubert, G., Blancféraud, L., Chambolle, A.: Image decomposition into a bounded variation component and an oscillating component. J. Math. Imaging Vis. 22, 71–88 (2005)

    Article  MathSciNet  Google Scholar 

  24. Aujol, J.F., Chambolle, A.: Dual norms and image decomposition models. Int. J. Comput. Vis. 63, 85–104 (2005)

    Article  Google Scholar 

  25. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. North Holland, Amsterdam (1976)

    MATH  Google Scholar 

  26. Vese, L.A., Osher, S.J.: Modeling textures with total variation minimization and oscillating patterns in image processing. J. Sci. Comput. 19, 553–572 (2003)

    Article  MathSciNet  Google Scholar 

  27. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20, 89–97 (2004)

    Article  MathSciNet  Google Scholar 

  28. Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms I. Grundlehren der mathematischen Wissenschaften, vol. 305. Springer, Berlin (1993)

    Book  Google Scholar 

  29. Wang, Y., Yang, J., Yin, W., Zhang, Y.: A new alternating minimization algorithm for total variation image reconstruction. SIAM J. Imaging Sci. 1, 248–272 (2008)

    Article  MathSciNet  Google Scholar 

  30. Chen, Y., Wang, Y., Li, M., He, G.: Augmented Lagrangian alternating direction method for low-rank minimization via non-convex approximation. Signal Image Video Process. 11, 1271–1278 (2017)

    Article  Google Scholar 

  31. Zhang, L., Zhang, L., Mou, X., Zhang, D.: FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 20, 2378–2386 (2011)

    Article  MathSciNet  Google Scholar 

  32. Gu, K., Zhai, G., Yang, X., Zhang, W.: Using free energy principle for blind image quality assessment. IEEE Trans. Multimed. 17, 50–63 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinwu Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by National Natural Science Foundation of China (61402166) and Hunan Provincial Natural Science Foundation of China (14JJ3105).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Chen, Y. NLTV-Gabor-based models for image decomposition and denoising. SIViP 14, 305–313 (2020). https://doi.org/10.1007/s11760-019-01558-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-019-01558-6

Keywords

Navigation