Skip to main content
Log in

Generalized Gaussian model-based reconstruction method of computed tomography image from fewer projections

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In modern computed tomography (CT) imaging, a high-quality image is produced by passing the X-ray radiation dose through the human body. The strategy for CT dose reduction is to reduce the projection views or to limit the scan angle. However, the reduction of radiation doses generates insufficient projection data which often leads the reconstruction problem. Iterative techniques are widely used addressing this issue where a prior-based method is more beneficial to reconstruct CT images. In this paper, the soft-thresholding-based reconstruction method is presented, and the use of the generalized Gaussian distribution model is considered to find the optimal thresholding value. Experimental results show that the reconstructed CT image from fewer projection views using the proposed method has higher quality compared with the other reconstruction approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Brenner, D.J., Elliston, C.D., Hall, E.J., Berdon, W.E.: Estimated risks of radiation induced fatal cancer from pediatric CT. Am. J. Roentgenol. 176(2), 289–296 (2001)

    Article  Google Scholar 

  2. de Gonzalez, A.B., Darby, S.: Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries. Lancet 357(22), 345–351 (2004)

    Article  Google Scholar 

  3. Brenner, D.J., Hall, E.J.: Current concepts-computed tomography-an increasing source of radiation exposure. New Engl. J. Med. 357(22), 2277–2284 (2007)

    Article  Google Scholar 

  4. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. In: Proceedings of the Eleventh Annual International Conference of the Center for Nonlinear Studies on Experimental Mathematics: Computational Issues in Nonlinear Science, pp. 259–268 (1992)

  5. Vogel, C.R., Oman, M.E.: Iterative methods for total variation denoising. SIAM J. Sci. Comput. 17(1), 227–238 (1996)

    Article  MathSciNet  Google Scholar 

  6. Wang, H., Wang, Y., Ren, W.: Image denoising using anisotropic second and fourth order diffusions based on gradient vector convolution. Comput. Sci. Inf. Syst. 9, 1493–1511 (2012)

    Article  Google Scholar 

  7. Wang, Y., Ren, W., Wang, H.: Anisotropic second and fourth order diffusion models based on convolutional virtual electric field for image denoising. Comput. Math. Appl. 66(10), 1729–1742 (2013)

    Article  MathSciNet  Google Scholar 

  8. Daubechies, I., Defrise, M., Mol, C.D.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004)

    Article  MathSciNet  Google Scholar 

  9. Herman, G.T.: Fundamentals of Computerized Tomography: Image Reconstruction from Projections, 2nd edn. Springer, Berlin (2009)

    Book  Google Scholar 

  10. Kak, A.C., Slaney, M.: Principles of computerized tomographic imaging. Med. Phys. 29, 107 (2001)

    Article  Google Scholar 

  11. Shepp, L.A., Logan, B.F.: The Fourier reconstruction of a head section. IEEE Trans. Nucl. Sci. 21(3), 21–43 (1974)

    Article  Google Scholar 

  12. Gordon, R., Herman, G.T.: Three-dimensional reconstruction from projections: a review of algorithms. Int. Rev. Cytol. 38, 111–151 (1974)

    Article  Google Scholar 

  13. Li, C.: Modified simultaneous algebraic reconstruction technique and its application to image reconstruction. Proc. SPIE Int. Soc. Opt. Eng. 6279, 01 (2007)

    Google Scholar 

  14. Andersen, H.A., KaK, A.C.: Simultaneous algebraic reconstruction technique (SART): a superior implementation of the art algorithm. Ultrason. Imaging 6(1), 81–94 (1984)

    Article  Google Scholar 

  15. Andersen, A.H.: Algebraic reconstruction in CT from limited views. IEEE Trans. Med. Imaging 8(1), 50–55 (1989)

    Article  Google Scholar 

  16. Hashemi, M., Beheshti, S., Cobbold, R.S.C., Paul, N.S.: Subband-dependent compressed sensing in local ct reconstruction. Signal, Image Video Process. 10, 1009–1015 (2015)

    Article  Google Scholar 

  17. Acunto, M.D., Benassi, A., Moroni, D., Salvetti, O.: 3d image reconstruction using radon transform. SIViP 10, 1–8 (2014)

    Google Scholar 

  18. Rosenthal, A., Jetzfellner, T., Razansky, D., Ntziachristos, V.: Efficient framework for model-based tomographic image reconstruction using wavelet packets. IEEE Trans. Med. Imaging 31(7), 1346–1357 (2012)

    Article  Google Scholar 

  19. You, X., Du, L., Cheung, Y.-M., Chen, Q.: A blind watermarking scheme using new nontensor product wavelet filter banks. IEEE Trans. Image Process. 19, 3271–3284 (2010)

    Article  MathSciNet  Google Scholar 

  20. Sidky, E.Y., Pan, X.: Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Phys. Med. Biol. 53(17), 4777–4807 (2008)

    Article  Google Scholar 

  21. Liu, Y., Ma, J., Fan, Y., Liang, Z.: Adaptive-weighted total variation minimization for sparse data toward low-dose x-ray computed tomography image reconstruction. Phys. Med. Biol. 57(23), 7923–7956 (2012)

    Article  Google Scholar 

  22. Yu, H., Wang, G.: A soft-threshold filtering approach for reconstruction from a limited number of projections. Phys. Med. Biol. 55(13), 3905–3916 (2010)

    Article  Google Scholar 

  23. Kak, A.C., Slaney, M.: Principles of computerized tomographic imaging (2001)

  24. Hashemi, M., Beheshti, S.: Adaptive bayesian denoising for general gaussian distributed (GGD) signals in wavelet domain. IEEE Trans. Signal Process. 62(5), 1147–1156 (2014)

    Article  MathSciNet  Google Scholar 

  25. Bruyant, P.P.: Analytic and iterative reconstruction algorithms in SPECT. J. Nucl. Med. 43(10), 1343–1358 (2002)

    Google Scholar 

  26. Chetih, N., Messali, Z.: tomographic image reconstruction using filtered back projection (FBP) and algebraic reconstruction technique (ART). In: 3rd International Conference on Control, Engineering and Information Technology (CEIT) (2015)

  27. Gilbert, P.F.: Iterative methods for the three-dimensional reconstruction of an object from projections. J. Theoret. Biol. 36(1), 105–117 (1972)

    Article  Google Scholar 

  28. Selesnick, I.: Total variation denoising (an MM algorithm). Connexions, 12 (2012)

  29. Islam, R., Lambert, A.J., Pickering, M., Scarvell, J.M., Smith, P.N.: Improved regularisation constraints for compressed sensing of multi-slice mri. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 4(1), 30–43 (2016)

    Article  Google Scholar 

  30. Sendur, L., Selesnick, I.W.: Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency. IEEE Trans. Signal Process. 50(11), 2744–2756 (2002)

    Article  Google Scholar 

  31. Mohamed, O.M.M., Jaidane-Saidane, M.: On the parameters estimation of the generalized gaussian mixture model. In: 17th European Signal Processing Conference (EUSIPCO 2009), pp. 2273–2277 (2009)

  32. Gonzalez-Farias, G., Molina, J.A.D., Rodriguez-Dagnino, R.M.: Efficiency of the approximated shape parameter estimator in the generalized gaussian distribution. IEEE Trans. Veh. Technol. 58(8), 4214–4223 (2009)

    Article  Google Scholar 

  33. Kingsbury, N.: Complex wavelets for shift invariant analysis and filtering of signals. Appl. Comput. Harmonic Anal. 10, 234–253 (2001)

    Article  MathSciNet  Google Scholar 

  34. Renieblas, G.P., Nogues, A.T., Gonzalez, A.M., Leon, N.G., del Castillo, E.G.: Structural similarity index family for image quality assessment in radiological images. J. Med. Imaging 4(3), 1–11 (2017)

    Article  Google Scholar 

  35. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  36. Abascal, J.F.P.J., Abella, M., Sisniega, A., Vaquero, J.J., Desco, M.: Investigation of different sparsity transforms for the PICCS algorithm in small-animal respiratory gated CT. PLOS one 10(4), e120140 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Department of Computer Science and Engineering of Dhaka University of Engineering & Technology, Gazipur for providing research support to continue the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Shafiqul Islam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M.S., Islam, R. Generalized Gaussian model-based reconstruction method of computed tomography image from fewer projections. SIViP 14, 547–555 (2020). https://doi.org/10.1007/s11760-019-01583-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-019-01583-5

Keywords

Navigation