Skip to main content
Log in

Training algorithm for perceptron with multi-pulse type activation function

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The conventional perceptron with the sign type activation function can be used for performing the linearly separable pattern recognition with its weight vector being found by the conventional perceptron training algorithm. On the other hand, the perceptron with the multi-pulse type activation function can be used for performing the piecewise linearly separable pattern recognition. This paper proposes a training algorithm for finding its weight vector. Moreover, some application examples of this perceptron are given for the demonstration purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65(6), 386–408 (1958)

    Article  Google Scholar 

  2. Novikoff, A.: On the convergence proofs on perceptrons. Proc. Symp. Math. Theory Autom. 12, 615–622 (1962)

    MathSciNet  Google Scholar 

  3. Minsky, M.L., Papert, S.A.: Perceptrons. MIT Press, London (1969)

    MATH  Google Scholar 

  4. Gallant, S.I.: Perceptron-based learning algorithms. IEEE Trans. Neural Netw. 1(2), 179–191 (1990)

    Article  MathSciNet  Google Scholar 

  5. Freund, Y., Schapire. R.E.: Large margin classification using the perceptron algorithm. In: Proceedings of the 11th Annual Conference on Computational Learning Theory. ACM Press (1998)

  6. Li, Y.Y., Zaragoza, H., Herbrich, R., Shawe-Taylor, J., Kandola, J.: The perceptron algorithm with uneven margins. In: Proceedings of the 19th International Conference on Machine Learning, pp. 379-386 (2002)

  7. Wan, S.J.: Cone algorithm: an extension of the perceptron algorithm. IEEE Trans. Syst. Man Cybern. 24(10), 1571–1576 (1994)

    Article  MathSciNet  Google Scholar 

  8. Widrow, B., Lehr, M.A.: 30 years of adaptive neural networks: perceptron, madaline, and backpropagation. Proc. IEEE 78(9), 1415–1442 (1990)

    Article  Google Scholar 

  9. Greenwood, G.W.: Training multiple-layer perceptrons to recognize attractors. IEEE Trans. Evol. Comput. 1(4), 244–248 (1997)

    Article  Google Scholar 

  10. Gurney, K.: An introduction to neural networks. UCL Press, London (1997)

    Book  Google Scholar 

  11. Gas, B.: Self-organizing multilayer perceptron. IEEE Trans. Neural Netw. 21(11), 1766–1779 (2010)

    Article  Google Scholar 

  12. Li, Y.Z., Zhang, Y., Li, W., Jiang, T.: Marine wireless big data: efficient transmission, related applications, and challenges. IEEE Wirel. Commun. 25(1), 19–25 (2018)

    Article  Google Scholar 

  13. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  14. Chen, F.Y., Chen, G.R., He, G.L., Xu, X.B., He, Q.B.: Universal perceptron and DNA-like learning algorithm for binary neural networks: LSBF and PBF implementations. IEEE Trans. Neural Networks 20(10), 1645–1658 (2009)

    Article  Google Scholar 

  15. Chen, F.Y., Chen, G.R., He, Q.B., He, G.L., Xu, X.B.: Universal perceptron and DNA-like learning algorithm for binary neural networks: non-LSBF implementations. IEEE Trans. Neural Netw. 20(8), 1293–1301 (2009)

    Article  Google Scholar 

  16. Chen, F.Y., Tang, W.H., Chen, G.R.: Single-layer perceptron and dynamic neuron implementing linearly non-separable Boolean functions. Int. J. Circuit Theory Appl. 37(3), 433–451 (2009)

    Article  Google Scholar 

  17. Czerniak, J., Zarzycki, H: Application of rough sets in the presumptive diagnosis of urinary system diseases. In: Artificial Intelligence and Security in Computing Systems, pp. 41–51 (2003)

  18. Li, Y., Ling, B.W.K., Xie, L.X., Dai, Q.Y.: Using LASSO for formulating constraint of least-squares programming for solving one-norm equality constrained problem. SIViP 11, 179–186 (2017)

    Article  Google Scholar 

  19. Li, Y.Z., Xie, P.C., Tang, Z.S., Jiang, T., Qi, P.H.: SVM-based sea-surface small target detection: a false-alarm-rate-controllable approach. IEEE Geosci. Remote Sens. Lett. 16(8), 1225–1229 (2019)

    Article  Google Scholar 

  20. Abid, F.B., Zgarni, S., Braham, A.: Distinct bearing faults detection in induction motor by a hybrid optimized SWPT and aiNet-DAG SVM. IEEE Trans. Energy Convers. 33(4), 1692–1699 (2018)

    Article  Google Scholar 

  21. Ho, C.Y.F., Ling, B.W.K., Lam, H.K., Nasir, M.H.U.: Global convergence and limit cycle behavior of weights of perceptron. IEEE Trans. Neural Networks 19(6), 938–947 (2008)

    Article  Google Scholar 

  22. Fu, X.G., Li, S.H., Fairbank, M., Wunsch, D.C.: Training recurrent neural networks with the Levenberg–Marquardt algorithm for optimal control of a grid-connected converter. IEEE Trans. Neural Netw. Learn. Syst. 19(9), 1900–1912 (2015)

    Article  MathSciNet  Google Scholar 

  23. https://github.com/zishengwu/audio-data-set-of-multi-piece-domain-perceptron

  24. Zhao, Y., Deng, B., Wang, Z.: Analysis and study of perceptron to solve XOR problem. In: The 2nd International Workshop on Autonomous Decentralized System, pp. 168–173 (2002)

  25. Maimaitiyiming, M., Sagan, V., Sidike, P., Kwasniewski, M.T.: Dual activation function-based extreme learning machine (ELM) for estimating Grapevine berry yield and quality. Remote Sens. 11, 7 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This paper was supported partly by the National Nature Science Foundation of China (Nos. U1701266, 61372173 and 61671163), the Team Project of the Education Ministry of the Guangdong Province (No. 2017KCXTD011), the Guangdong Higher Education Engineering Technology Research Center for Big Data on Manufacturing Knowledge Patent (No. 501130144) and Hong Kong Innovation and Technology Commission, Enterprise Support Scheme (No. S/E/070/17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingo Wing-Kuen Ling.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Ling, B.WK. Training algorithm for perceptron with multi-pulse type activation function. SIViP 14, 925–933 (2020). https://doi.org/10.1007/s11760-019-01624-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-019-01624-z

Keywords

Navigation