Skip to main content
Log in

Automated early breast cancer detection and classification system

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Early detection of breast cancer is clinically important to reduce the mortality rate. In this study, a new computer-aided detection (CAD) and classification system is introduced to classify two types of mammogram tumors (i.e., mass and calcification) as either benign or malignant. In this CAD system, the tumor-like regions (TLRs) are identified using the automated optimal Otsu thresholding method. Afterward, deep convolutional neural networks (CNNs) process the extracted TLRs to extract relevant mammogram features, investigating AlexNet and ResNet-50 architectures. The normalized extracted CNN features are further input to a support vector machine classifier to decode the classes of mammogram structures (i.e., Benign Calcification, Benign Mass, Malignant Calcification, and Malignant Mass nodules). The experimental results are tested on 2800 mammogram images from the Curated Breast Imaging Subset of Digital Database of Screening Mammography, a publicly available dataset. The accuracy of the proposed CAD system, to classify the ROI into one of the four classes, achieves 0.91 using AlexNet and 0.84 using ResNet-50 models, using fivefold cross-validation. Comparison results with the related methods confirm the advantages of the proposed CAD system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. WHO. World health organization. https://www.who.int/cancer/prevention/diagnosis-screening/breast-cancer/en/ (2020). Accessed 7 Nov 2020

  2. DeSantis, C.E., Miller, K.D., GodingSauer, A., Jemal, A., Siegel, R.L.: Cancer statistics for African Americans. CA Cancer J. Clin. 69(3), 211 (2019)

    Article  Google Scholar 

  3. Chen, H.L., Yang, B., Wang, G., Wang, S.J., Liu, J., Liu, D.Y.: Support vector machine based diagnostic system for breast cancer using swarm intelligence. J. Med. Syst. 36(4), 2505 (2012)

    Article  Google Scholar 

  4. Shen, L., Margolies, L.R., Rothstein, J.H., Fluder, E., McBride, R., Sieh, W.: Deep learning to improve breast cancer detection on screening mammography. Sci. Rep. 9(1), 1 (2019)

    Google Scholar 

  5. Hamidinekoo, A., Denton, E., Rampun, A., Honnor, K., Zwiggelaar, R.: Deep learning to improve breast cancer detection on screening mammography. Med. Image Anal. 47, 45 (2018)

    Article  Google Scholar 

  6. Chan, H.P., Samala, R.K., Hadjiiski, L.M., Zhou, C.: Deep Learning in Mammography and Breast Histology, An Overview and Future Trends, Medical Image Analysis, pp. 3–21. Springer, Berlin (2020)

    Google Scholar 

  7. Altaf, F., Islam, S.M., Akhtar, N., Janjua, N.K.: Going deep in medical image analysis: concepts, methods, challenges, and future directions. IEEE Access 7, 99540 (2019)

    Article  Google Scholar 

  8. Lévy, D., Jain, A.: Breast mass classification from mammograms using deep convolutional neural networks, arXiv preprint arXiv:1612.00542 (2016)

  9. Yi, D., Sawyer, R.L., CohnIII, D., Dunnmon, J., Lam, C., Xiao, X., Rubin, D.: Optimizing and visualizing deep learning for benign/malignant classification in breast tumors, arXiv preprint arXiv:1705.06362 (2017)

  10. Castro, E., Cardoso, J.S., Pereira, J.C.: Elastic deformations for data augmentation in breast cancer mass detection. In: 2018 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI), pp. 230–234. IEEE (2018)

  11. Xi, P., Shu, C., Goubran, R.: Abnormality detection in mammography using deep convolutional neural networks. In: 2018 IEEE International Symposium on Medical Measurements and Applications (MeMeA), pp. 1–6. IEEE (2018)

  12. Tsochatzidis, L., Costaridou, L., Pratikakis, I.: Deep learning for breast cancer diagnosis from mammograms—a comparative study. J. Imaging 5(3), 37 (2019)

    Article  Google Scholar 

  13. Chun-ming, T., Xiao-mei, C., Xiang, Y., Fan, Y., et al.: Five classification of mammography images based on deep cooperation convolutional neural network. Am. Sci. Res. J. Eng. Technol. Sci. ASRJETS 57(1), 10 (2019)

    Google Scholar 

  14. Ragab, D.A., Sharkas, M., Marshall, S., Ren, J.: Breast cancer detection using deep convolutional neural networks and support vector machines. PeerJ 7, e6201 (2019)

    Article  Google Scholar 

  15. Falconí, L.G., Pérez, M., Aguilar, W.G.: Transfer learning in breast mammogram abnormalities classification with mobilenet and nasnet. In: 2019 International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 109–114. IEEE (2019)

  16. Ansar, W., Shahid, A.R., Raza, B., Dar, A.H.: Breast cancer detection and localization using MobileNet based transfer learning for mammograms. In: International Symposium on Intelligent Computing Systems, pp. 11–21. Springer (2020)

  17. Lee, R.S., Gimenez, F., Hoogi, A., Miyake, K.K., Gorovoy, M., Rubin, D.L.: A curated mammography data set for use in computer-aided detection and diagnosis research. Sci. Data 4(1), 1 (2017)

  18. Bowyer, K., Kopans, D., Kegelmeyer, W., Moore, R., Sallam, M., Chang, K., Woods, K.: The digital database for screening mammography. In: Third International Workshop on Digital Mammography, vol. 58, p. 27 (1996)

  19. Al-Najdawi, N., Biltawi, M., Tedmori, S.: Mammogram image visual enhancement, mass segmentation and classification. Appl. Soft Comput. 35, 175 (2015)

    Article  Google Scholar 

  20. Lukac, R.: Single-Sensor Imaging: Single-Sensor Imaging: Methods and Applications for Digital Cameras. CRC Press, Boca Raton (2018)

    Book  Google Scholar 

  21. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62 (1979)

    Article  MathSciNet  Google Scholar 

  22. Deepa, S., Subbiah, B.V.: Efficient ROI segmentation of digital mammogram images using Otsu’s N thresholding method. Natl. J. Adv. Comput. Manag. 4, 1 (2013)

    Google Scholar 

  23. Swetha, T., Bindu, C.H.: Detection of breast cancer with hybrid image segmentation and Otsu’s thresholding. In: 2015 International Conference on Computing and Network Communications (CoCoNet), pp. 565–570. IEEE (2015)

  24. LeCun, Y., Kavukcuoglu, K., Farabet, C.: Convolutional networks and applications in vision. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems, pp. 253–256. IEEE (2010)

  25. Anagnostis, A., Asiminari, G., Papageorgiou, E., Bochtis, D.: A convolutional neural networks based method for anthracnose infected walnut tree leaves identification. Appl. Sci. 10(2), 469 (2020)

    Article  Google Scholar 

  26. Truong, T.D., Pham, H.T.T.: Breast cancer histopathological image classification utilizing convolutional neural network. In: International Conference on the Development of Biomedical Engineering in Vietnam, pp. 531–536. Springer (2018)

  27. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097 (2012)

  28. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015), arXiv preprint arXiv:1512.03385 (2016)

  29. Elnakib, A., Amer, H.M., Abou-Chadi, F.E.: Early lung cancer detection using deep learning optimization. Int. J. Online Biomed. Eng. iJOE 16(06), 82 (2020)

    Article  Google Scholar 

  30. Moustafa, A.A., Elnakib, A., Areed, N.F.: Age-invariant face recognition based on deep features analysis. Signal Image Video Process. 14, 1027 (2020)

  31. Wu, Z., Shen, C., Van DenHengel, A.: Wider or deeper: revisiting the resnet model for visual recognition. Pattern Recogn. 90, 119 (2019)

    Article  Google Scholar 

  32. Suzuki, S., Zhang, X., Homma, N., Ichiji, K., Sugita, N., Kawasumi, Y., Ishibashi, T., Yoshizawa, M.: Mass detection using deep convolutional neural network for mammographic computer-aided diagnosis. In: 2016 55th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), pp. 1382–1386 IEEE (2016)

  33. Gunn, S.R., et al.: Support vector machines for classification and regression. ISIS Tech. Rep. 14(1), 5 (1998)

    Google Scholar 

  34. Pisner, D.A., Schnyer, D.M.: Support Vector Machine, Machine Learning, pp. 101–121. Elsevier, Amsterdam (2020)

    Google Scholar 

  35. Zhu, W., Zeng, N., Wang, N., et al.: Sensitivity, specificity, accuracy, associated confidence interval and ROC analysis with practical SAS implementations. NESUG Proc. Health Care Life Sci. Baltim. Md. 19, 67 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Elnakib.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hekal, A.A., Elnakib, A. & Moustafa, H.ED. Automated early breast cancer detection and classification system. SIViP 15, 1497–1505 (2021). https://doi.org/10.1007/s11760-021-01882-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-021-01882-w

Keywords

Navigation