Skip to main content
Log in

A novel singular value decomposition-based similarity measure method for non-local means denoising

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Many methods have been proposed for image denoising, among which the non-local means (NLM) denoising is widely used for fully exploiting the self-similarity of natural images. For NLM denoising, it needs to calculate the similarity of clean image blocks as weights. But affected by noise, it is challenging to accurately get the similarity of clean image patches. Most existing NLM denoising approaches often cause the restored image to be over smoothed and lose lots of details, especially for image with high noise levels. To tackle this, a novel singular value decomposition-based similarity measure method is proposed, which can effectively reduce the disturbance of noise. For the method, we first calculate and vectorize the singular values of two image patches extracted from the noisy image and compute Euclidean distances and cross-angles of the vectors. Second, we propose to utilize the geometric average of Euclidean distance and cross-angle to calculate the similarity between two image patches which is resistant to noise. Third, the proposed similarity measure is applied to non-local means denoising to compute similarity of noisy image patches. Experimental results show that compared to state-of-the-art denoising algorithms, the proposed method can effectively eliminate noise and restore more details with higher peak signal-to-noise ratio (PSNR) and the structural similarity (SSIM) index values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fang, Y., Yan, J., Liu, J., Wang, S., Li, Q., Guo, Z.: Objective quality assessment of screen content images by uncertainty weighting. IEEE Trans. Image Process. 26, 2016–2027 (2017)

    Article  MathSciNet  Google Scholar 

  2. Zhang, Y., Ngan, K.N.: Objective quality assessment of image retargeting by incorporating fidelity measures and inconsistency detection. IEEE Trans. Image Process. 26(12), 5980–5993 (2017)

    Article  MathSciNet  Google Scholar 

  3. Bampis, C.G., Li, Z., Moorthy, A.K., Katsavounidis, I., Aaron, A., Bovik, A.C.: Study of temporal effects on subjective video quality of experience. IEEE Trans. Image Process. 26(11), 5217–5231 (2017)

    Article  MathSciNet  Google Scholar 

  4. Claudio, E.D.D., Jacovitti, G.: A detail-based method for linear full reference image quality prediction. IEEE Trans. Image Process. 27(1), 179–193 (2018)

    Article  MathSciNet  Google Scholar 

  5. Wang, H., Fu, J., Lin. W., Hu, S., Kuo, C.C.J. ,Zuo , L.: Image quality assessment based on local linear information and distortion-specific compensation. IEEE Trans. Image Process. 26(2), 915–926 (2016)

  6. Zhang, C., Cheng, W., Hirakawa, K.: Corrupted reference image quality assessment of denoised images. IEEE Trans. Image Process. 28(4), 1732–1747 (2019)

    Article  MathSciNet  Google Scholar 

  7. Rohil, M.K., Gupta, N., Yadav, P.: An improved model for no-reference image quality assessment and a no-reference video quality assessment model based on frame analysis. Signal Image Video Process. 14, 205–213 (2020)

    Article  Google Scholar 

  8. Wang, Z., Bovik, A.C.: Mean squared error: love it or leave it? A new look at signal fidelity measures. IEEE Signal Process. Mag. 26(1), 98–117 (2009)

    Article  Google Scholar 

  9. Horé, A.,Ziou, D.: Image quality metrics: PSNR vs. SSIM. In: 2010 International Conference on Pattern Recognition, IEEE Computer Society, pp. 2366–2369 (2010)

  10. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  11. Tan, H.L., Li, Z., Tan, Y.H., Rahardja, S., Yeo, C.: A perceptually relevant MSE-based image quality metric. IEEE Trans. Image Process. 22(11), 4447–4459 (2013)

    Article  MathSciNet  Google Scholar 

  12. Md, S.K., Appina, B., Channappayya, S.S.: Full-reference stereo image quality assessment using natural stereo scene statistics. IEEE Signal Process. Lett. 22(11), 1985–1989 (2015)

    Article  Google Scholar 

  13. Wang, F., Sun, X., Guo, Z., Huang, Y., Fu, K.: An object-distortion based image quality similarity. IEEE Signal Process. Lett. 22(10), 1534–1537 (2015)

    Article  Google Scholar 

  14. Oszust, M.: No-reference image quality assessment using image statistics and robust feature descriptors. IEEE Signal. Process. Lett. 24(11), 1656–1660 (2017)

    Article  Google Scholar 

  15. Oszust, M.: Local feature descriptor and derivative filters for blind image quality assessment. IEEE Signal. Process. Lett. 26(2), 322–326 (2019)

    Article  Google Scholar 

  16. Ma, K., Liu, W., Liu, T., Wang, Z., Tao, D.: dipIQ: blind image quality assessment by learning-to-rank discriminable image pairs. IEEE Trans. Image Process. 26(8), 3951–3964 (2017)

    Article  MathSciNet  Google Scholar 

  17. Ma, K., Liu, W., Zhang, K., Duanmu, Z., Wang, Z., Zuo, W.: End-to-end blind image quality assessment using deep neural networks. IEEE Trans. Image Process. 27(3), 1202–1213 (2018)

    Article  MathSciNet  Google Scholar 

  18. Vega, M.T., Mocanu, D.C., Famaey, J., Stavrou, S., Liotta, A.: Deep learning for quality assessment in live video streaming. IEEE Signal. Process. Lett. 24(6), 736–740 (2017)

    Article  Google Scholar 

  19. Bosse, S., Maniry, D., Müller, K.R., Wiegand, T., Samek, W.: Deep neural networks for no-reference and full-reference image quality assessment. IEEE Trans. Image Process. 27(1), 206–219 (2018)

    Article  MathSciNet  Google Scholar 

  20. Shan, W., Liu, P., Mu, L., Cao, C., He, G.: Hyperspectral image denoising with dual deep CNN. IEEE Access 7, 171297–171312 (2019)

    Article  Google Scholar 

  21. Yang, Y., Ping, Z., Ma, F., Wang, Y.: Fusion of hyperspectral and multispectral images with sparse and proximal regularization. IEEE Access 7, 186352–186363 (2019)

    Article  Google Scholar 

  22. Zhang, J., Lu, Z., Li, M., Wu, H.: GAN-based image augmentation for finger-vein biometric recognition. IEEE Access 7, 183118–183132 (2019)

    Article  Google Scholar 

  23. Xue, S., Qiu, W., Liu, F.: Faster image super-resolution by improved frequency-domain neural networks. Signal. Image Video Process. 14, 257–265 (2020)

  24. Wang, Y., Wang, J., Song, X., Han, L.: An efficient adaptive fuzzy switching weighted mean filter for salt-and-pepper noise removal. IEEE Signal. Process. Lett. 23(11), 1582–1586 (2016)

    Article  Google Scholar 

  25. Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. SIAM J. Multiscale Model. Simul. 4(2), 490–530 (2005)

    Article  MathSciNet  Google Scholar 

  26. Chen, J., Zhan, Y., Cao, H.: Adaptive sequentially weighted median filter for image highly corrupted by impulse noise. IEEE Access 7, 158545–158556 (2019)

    Article  Google Scholar 

  27. Liu, X., Chen, Y.: NLTV-Gabor-based models for image decomposition and denoising. Signal Image Video Process. 14, 305–313 (2020)

    Article  Google Scholar 

  28. Lu, L., Jin, W., Wang, X.: Non-local means image denoising with a soft threshold. IEEE Signal Process. Lett. 22(7), 833–837 (2015)

    Article  Google Scholar 

  29. Souidene, W., Megrhi, S., Beghdadi, A., Amar, C.B.: Perceptual non local mean**. Control and Signal Processing, P-NLM) denoising, International Symposium on Communications (2012)

    Google Scholar 

  30. Lai, R., Dou, X.: Improved non-local means filtering algorithm for image denoising. Int. Cong. Image Signal Process. 2, 720–722 (2010)

    Article  Google Scholar 

  31. Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. Presented **(2009)

  32. Rajwade, A., Rangarajan, A., Banerjee, A.: Image denoising using the higher order singular value decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 35(4), 849–862 (2013)

    Article  Google Scholar 

  33. Jha, S.K., Yadava, R.D.S.: Denoising by singular value decomposition and its application to electronic nose data processing. Denoising by Singular Value Decomposition and Its Application to Electronic Nose Data Processing 11(1), 35–44 (2011)

    Google Scholar 

  34. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)

    Article  Google Scholar 

  35. Yuan, F., Huang, L.-F., Yao, Y.: Algorithm for image quality measurement using singular value decomposition. Wireless Mobile Sens. Netw, IET (2007)

    Book  Google Scholar 

  36. Mansouri, A., Aznaveh, A.M., Azar, F.T., Jahanshahi, J.A.: Image quality assessment using the singular value decomposition theorem. Opt. Rev. 16(2), 49–53 (2009)

    Article  Google Scholar 

  37. Van, D.V.D., Kocher, M.: SURE-based non-local means. IEEE Signal Process. Lett. 16(11), 973–976 (2009)

    Article  Google Scholar 

  38. Matan, P., Michael, E., Hiroyuk, T., Peyman, M.: Generalizing the nonlocal-means to super-resolution reconstruction. IEEE Trans. Image Process. 18(1), 36–51 (2009)

    Article  MathSciNet  Google Scholar 

  39. Zhang, K., Gao, X., Tao, D., Li, X.: Single image super-resolution with non-local means and steering kernel regression. IEEE Trans. Image Process. 21(11), 4544–4556 (2012)

    Article  MathSciNet  Google Scholar 

  40. Romano, Y., Protter, M., Elad, M.: Single image interpolation via adaptive nonlocal sparsity-based modeling. IEEE Trans. Image Process. 23(7), 3085–3098 (2014)

    Article  MathSciNet  Google Scholar 

  41. Deng, C., Tian, W., Wang, S., et al.: Structural similarity based single image super-resolution with nonlocal regularization. Optik 125, 4005–4008 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Song, X., Chen, K. et al. A novel singular value decomposition-based similarity measure method for non-local means denoising. SIViP 16, 403–410 (2022). https://doi.org/10.1007/s11760-021-01948-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-021-01948-9

Keywords

Navigation