Skip to main content
Log in

An adaptive bilateral filtering method based on improved convolution kernel used for infrared image enhancement

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Smoothing filters are widely used in computer vision and computer graphics. Bilateral filtering is a typical edge-preserving filter, which has the advantages of sharpening the image edge contour and denoising. The traditional adaptive bilateral filtering algorithms only considered the spatial variance and the adaptation of gray-scale variance which ignores the influence of the convolution kernel on infrared images. In this paper, an adaptive bilateral filter method improved convolution kernel is proposed for infrared image enhancement which combines the edge detection operator with bilateral filtering. The method primarily combines the advantages of edge detection operators to propose an improved convolution kernel in bilateral filtering. The main purpose of the proposed method is used to enhance the details of infrared images and suppress noise. The effective of the proposed method is verified by the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lin, C.L.: An approach to adaptive infrared image enhancement for long-range surveillance. Infrared Phys. Technol. 54(2), 84–91 (2011)

    Article  Google Scholar 

  2. Lohmann, Adolf W.: Image rotation, Wigner rotation, and the fractional Fourier transform. J. Opt. Soc. Am. A 10(10), 2181–2186 (1993)

    Article  Google Scholar 

  3. Antonini, M Barlaud: Image coding using wavelet transform. IEEE Trans. Image Process. 1(2), 205–220 (1992)

    Article  Google Scholar 

  4. Rahman, Z.U., Jobson, D.J., Woodell, G.A.: Retinex processing for automatic image enhancement. Proc. SPIE Int. Soc. Opt. Eng. 13, 100–110 (2004)

    Google Scholar 

  5. Stark, J.A.: Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Trans. Image Process. 9(5), 889–896 (2000)

    Article  Google Scholar 

  6. Reza, A.M.: Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. J. VLSI Signal Process. Syst. Signal Image Video Technol. 38(1), 35–44 (2004)

    Article  Google Scholar 

  7. Lai, R., Yang, Y.T., Wang, B.J., Zhou, H.X.: A quantitative measure based infrared image enhancement algorithm using plateau histogram. Opt. Commun. 283, 4283–4288 (2010)

    Article  Google Scholar 

  8. Liang, K., Ma, Y., Xie, Y., Zhou, B., Wang, R.: A new adaptive contrast enhancement algorithm for infrared images based on double plateaus histogram equalization. Infrared Phys. Technol. 55, 309–315 (2012)

    Article  Google Scholar 

  9. Badamchizadeh, M.A., Aghagolzadeh, A.: Comparative study of unsharp masking methods for image enhancement. In: IEEE First Symposium on Multi-agent Security & Survivability. IEEE (2004)

  10. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: International Conference on Computer Vision. IEEE (2002)

  11. Yaroslavsky, L.P.: Digital Picture Processing. An Introduction. Springer, Berlin (1985)

    Book  Google Scholar 

  12. Lee, J.S.: Digital image smoothing and the sigma filter. Comput. Vis. Graph. Image Process. 24(2), 255–269 (1983)

    Article  Google Scholar 

  13. Smith, S.M., Brady, J.M.: SUSAN—a new approach to low level image processing. Int. J. Comput. Vis. (2015)

  14. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (2002)

    Article  Google Scholar 

  15. Boomgaard, R.V.D., Weijer, J.V.D.: On the equivalence of local-mode finding, robust estimation and mean-shift analysis as used in early vision tasks. In: Proceedings of 16th International Conference on Pattern Recognition, 2002. IEEE (2002)

  16. Comaniciu, D., Meer, P.: Mean shift analysis and applications. Iccv. IEEE Computer Society (1999)

  17. Weijer, J.V.D., Boomgaard, R.V.D.: Least squares and robust estimation of local image structure. Int. J. Comput. Vis. 64(2–3), 143–155 (2005)

    Article  Google Scholar 

  18. Zhang, M., Gunturk, B.K.: Multiresolution bilateral filtering for image denoising. IEEE Trans. Image Process. 17(12), 2324–2333 (2008)

    Article  MathSciNet  Google Scholar 

  19. Kang, X., Li, S., Benediktsson, J.A.: Spectral-spatial hyperspectral image classification with edge-preserving filtering. IEEE Trans. Geosci. Remote Sens. 52(5), 2666–2677 (2014)

    Article  Google Scholar 

  20. Fan, R., Ai, X., Dahnoun, N.: Road surface 3d reconstruction based on dense subpixel disparity map estimation. IEEE Trans. Image Process. 27, 1–1 (2018)

    Article  MathSciNet  Google Scholar 

  21. Monno, Y., Kiku, D., Tanaka, M , et al. Adaptive residual interpolation for color image demosaicking. In: IEEE International Conference on Image Processing. IEEE (2015)

  22. Durand, F., Dorsey, J.: Fast bilateral filtering for the display of high-dynamic-range images. ACM Trans. Graph. 21(3), 257–266 (2002)

    Article  Google Scholar 

  23. Sumiya, Y., Fukushima, N., Sugimoto, K, et al.: Extending compressive bilateral filtering for arbitrary range kernel. In: 2020 IEEE International Conference on Image Processing (ICIP). IEEE (2020)

  24. Kanopoulos, N., Vasanthavada, N., Baker, R.L.: Design of an image edge detection filter using the Sobel operator. IEEE J. Solid State Circuits 23(2), 358–367 (2002)

    Article  Google Scholar 

  25. Gao, W., Yang, L., Zhang, X., et al.: An improved Sobel edge detection. In: IEEE International Conference on Computer Science & Information Technology

  26. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: International Conference on Computer Vision. IEEE (2002)

  27. Hayat, M.M., Torres, S.N., Cain, S., et al.: Model-based real-time nonuniformity correction in focal plane array detectors. Proc. SPIE Int. Soc. Opt. Eng. 3377, 122–132 (1998)

    Google Scholar 

  28. Harris, J.G., Chiang, Y.M.: Nonuniformity correction of infrared image sequences using the constant-statistics constraint. IEEE Trans. Image Process. 8(8), 1148–1151 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Lv.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, H., Shan, P., Shi, H. et al. An adaptive bilateral filtering method based on improved convolution kernel used for infrared image enhancement. SIViP 16, 2231–2237 (2022). https://doi.org/10.1007/s11760-022-02188-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-022-02188-1

Keywords

Navigation