Skip to main content
Log in

Moving object detection via RPCA framework using non-convex low-rank approximation and total variational regularization

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Moving object detection is one of the significant tasks in computer vision. Robust Principal Component Analysis (RPCA) is a common method for moving object detection. However, this algorithm fails to effectively utilize the low-rank prior information of the background and the spatio-temporal continuity of the foreground, and exhibits degraded performance in the existence of shadows, photometric variations, rapidly moving objects, dynamic backgrounds, and jitters. Therefore, a new model via RPCA framework using non-convex low-rank approximation and total variational regularization is proposed to detect moving objects. Firstly, this paper introduces a non-convex function to deal with the problem that the nuclear norm excessively penalizes large singular values for the sake of constraining the low-rank characteristics of video background availably. Then, the sparsity is strengthened with the l1-norm and the spatio-temporal continuity of the foreground is explored by TV regularization. Finally, the augmented Lagrange multiplier algorithm is expanded by the alternating direction multiplier strategy to solve the model. Extensive experiments show that the proposed method outperforms existing methods in terms of the accuracy of moving object detection and foreground extraction effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig.3
Fig.4
Fig.5

Similar content being viewed by others

References

  1. Bouwmans, T., Zahzah, E.H.: Robust PCA via principal component pursuit: a review for a comparative evaluation in video surveillance. Comput. Vis. Image Underst. 122(5), 22–34 (2014). https://doi.org/10.1016/j.cviu.2013.11.009

    Article  Google Scholar 

  2. Bouwmans, T., Sobral, A., Javed, S., et al.: Decompositi on into low-rank plus additive matrices for background/foreground separation: a review for a comparative evaluation with a large-scale dataset. Comput. Sci. Rev. 23(2), 1–71 (2017). https://doi.org/10.1016/j.cosrev.2016.11.001

    Article  MATH  Google Scholar 

  3. Kim, J.S., Dong, H.Y., Joo, Y.H.: Fast and robust algorithm of tracking multiple moving objects for intelligent video surveillance systems. IEEE Trans. Consum. Electron. 57(3), 1165–1170 (2011). https://doi.org/10.1109/TCE.2011.6018870

    Article  Google Scholar 

  4. Poppe, R.: A survey on vision-based human action recognition. Image Vis. Comput. 28(6), 976–990 (2010). https://doi.org/10.1016/j.imavis.2009.11.014

    Article  Google Scholar 

  5. Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. 38(4), 13–25 (2006). https://doi.org/10.1145/1177352.1177355

    Article  Google Scholar 

  6. Aufrichtig, R., Wilson, D.L.: X-ray fluoroscopy spatio-temporal filtering with object detection. IEEE Trans. Med. Imaging 14(4), 733–746 (1995). https://doi.org/10.1109/42.476114

    Article  Google Scholar 

  7. Shi, G., Tao, H., Dong, W., et al.: Robust foreground estimation via structured gaussian scale mixture modeling. IEEE Trans. Image Process. 27(10), 4810–4824 (2018). https://doi.org/10.1109/TIP.2018.2845123

    Article  MATH  Google Scholar 

  8. Barnich, O., Droogenbroeck, M.V.: ViBe: a universal background subtraction algorithm for video sequences. IEEE Trans. Image Process. 20(6), 1709–1724 (2011). https://doi.org/10.1109/TIP.2010.2101613

    Article  MATH  Google Scholar 

  9. Hofmann, M., Tiefenbacher, P., Rigoll, G.: Background segmentation with feedback: The pixel-based adaptive segmenter. In: IEEE Computer Society Conference on Computer Vision And Pattern Recognition Workshops (CVPR), pp. 38–43 (2012). doi:https://doi.org/10.1109/TIP.2010.2101613

  10. Cande, E.J., Xiaodong, L., et al.: Robust principal component analysis? J. ACM 58(5), 289–298 (2009). https://doi.org/10.1145/1970392.1970395

    Article  Google Scholar 

  11. Kang, Z., Peng, C., Cheng, Q.: Robust PCA via nonconvex rank approximation. In: IEEE International Conference on Data Mining (ICDM), pp. 211–220 (2015). doi: https://doi.org/10.1109/ICDM.2015.15

  12. Hu, Z., Wang, Y., Su, R., et al.: Moving object detection based on non-convex RPCA with segmentation constraint. IEEE Access. 8(2), 41026–41036 (2020). https://doi.org/10.1109/ACCESS.2020.2977273

    Article  Google Scholar 

  13. Yang, Z., Fan, L., Yang, Y., et al.: Generalized singular value thresholding operator based nonconvex low-rank and sparse decomposition for moving object detection. J. Franklin Inst. 356(16), 10138–10154 (2019). https://doi.org/10.1016/j.jfranklin.2019.09.017

    Article  MATH  Google Scholar 

  14. Wen, F., Ying, R., Liu, P., et al.: Nonconvex regularized robust PCA using the proximal block coordinate descent algorithm. IEEE Trans. Signal Process. 67(20), 5402–5416 (2019). https://doi.org/10.1109/TSP.2019.2940121

    Article  MATH  Google Scholar 

  15. Cao, X., Liang, Y., Guo, X.: Total variation regularized RPCA for irregularly moving object detection under dynamic background. IEEE Trans. Cybern. 46(4), 1014–1027 (2015). https://doi.org/10.1109/TCYB.2015.2419737

    Article  Google Scholar 

  16. Shijila, B., Tom, A.J., George, S.N.: Moving object detection by low rank approximation and l1-TV regularization on RPCA framework. J. Vis. Commun. Image Represent. 56(10), 188–200 (2018). https://doi.org/10.1016/j.jvcir.2018.09.009

    Article  Google Scholar 

  17. Zhou, X., Yang, C., Yu, W.: Moving object detection by detecting contiguous outliers in the low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35(3), 597–610 (2013). https://doi.org/10.1109/TPAMI.2012.132

    Article  Google Scholar 

  18. Chen, C., Li, S., Qin, H., et al.: Robust salient motion detection in non-stationary videos via novel integrated strategies of spatio-temporal coherency clues and low-rank analysis. Pattern Recogn. 52, 410–432 (2016). https://doi.org/10.1016/j.patcog.2015.09.033

    Article  Google Scholar 

  19. Ebadi, S.E., Ones, V.G., Izquierdo, E.: Efficient background subtraction with low-rank and sparse matrix decomposition. In: IEEE International Conference on Image Processing (ICIP), pp. 4863–4867 (2015). doi: https://doi.org/10.1109/ICIP.2015.7351731

  20. Gao, C., Moore, B.E., Nadakuditi, R.R.: Augmented robust PCA for foreground-background separation on noisy, moving camera video. In: IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 1240–1244 (2017). doi: https://doi.org/10.1109/GlobalSIP.2017.8309159

  21. Rodriguez, P., Chau, G.: Panning and jitter invariant incremental principal component pursuit for video background modeling. In: IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 1844–1852 (2017). doi: https://doi.org/10.1109/ICCVW.2017.218

  22. Lu, C., Feng, J., Chen, Y., et al.: Tensor robust principal component analysis with a new tensor nuclear norm. IEEE Trans. Pattern Anal. Mach. Intell. 42(4), 925–938 (2020). https://doi.org/10.1109/TPAMI.2019.2891760

    Article  Google Scholar 

  23. Cai, S., Luo, Q., Yang, M., et al.: Tensor robust principal component analysis via non-convex low rank approximation. Appl. Sci. 9(7), 1411 (2019). https://doi.org/10.3390/app9071411

    Article  Google Scholar 

  24. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D-Nonlinear Phenomena. 60(1–4), 259–268 (1992). https://doi.org/10.1016/0167-2789(92)90242-F

    Article  MATH  Google Scholar 

  25. Madathil, B., George, S.N.: Twist tensor total variation regularized-reweighted nuclear norm based tensor completion for video missing area recovery. Inf. Sci. 423(1), 376–397 (2018). https://doi.org/10.1016/j.ins.2017.09.058

    Article  MATH  Google Scholar 

  26. Phuc, N.T., Tao, P.D.: A continuous DC programming approach to the strategic supply chain design problem from qualified partner set. Eur. J. Oper. Res. 183(3), 1001–1012 (2007). https://doi.org/10.1016/j.ejor.2005.06.079

    Article  MATH  Google Scholar 

  27. Beck, A., Teboulle, M.: Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. Image Process. 18(11), 2419–2434 (2009). https://doi.org/10.1109/TIP.2009.2028250

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant (Nos. 62173127, 61803146 and 61973104), the Scientific and Technological Innovation Leaders in Central Plains (No. 224200510008), the Henan Excellent Young Scientists Fund (No. 212300410036), the Program for Science and Technology Innovation Talents in Universities of Henan Province under Grant (No. 21HASTIT029), the Training Program for Young Backbone Teachers in Universities of Henan Province under Grant (No. 2019GGJS089), the Key Science and Technology Projects in Henan Province under Grant (Nos. 212102210169 and 212102210086), the Innovative Funds Plans of Henan University of Technology under Grant (No. 2020ZKCJ06), the Zhengzhou Science and Technology Collaborative Innovation Project (No. 21ZZXTCX06), the Cultivation Program of Young Backbone Teachers in Henan University of Technology under Grant chentianfei, the Open Fund from Research Platform of Grain Information Processing Center in Henan University of Technology under Grant (Nos. KFJJ-2020-107, KFJJ-2020-111 and KFJJ-2020-114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Zhao, D., Sun, L. et al. Moving object detection via RPCA framework using non-convex low-rank approximation and total variational regularization. SIViP 17, 109–117 (2023). https://doi.org/10.1007/s11760-022-02210-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-022-02210-6

Keywords

Navigation