Skip to main content
Log in

On the Strong Metric Dimension of Tetrahedral Diamond Lattice

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

A resolving set is a set W of vertices of a connected graph G(V, E) such that for every pair of vertices u, v of G, there exists a vertex \({w\in W}\) with the condition that the length of a shortest path from u to w is different from the length of a shortest path from v to w. A resolving set of minimum cardinality of G is called a metric basis. Metric dimension is the cardinality of a metric basis. A pair of vertices u, v is said to be strongly resolved by a vertex s, if there exists at least one shortest path from s to u passing through v, or a shortest path from s to v passing through u. A set \({W\subseteq V}\), is said to be a strong resolving set if for all pairs \({u,v\notin W }\), there exists some element \({s\in W}\) such that s strongly resolves the pair u, v. A strong resolving set of minimum cardinality is called a strong metric basis. The cardinality of a strong metric basis for G is called the strong metric dimension of G. The strong metric dimension (metric dimension) problem is to find a strong metric basis (metric basis) in the graph. In this paper, we solve the strong metric dimension and the metric dimension problems for the graph of tetrahedral diamond lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ali, B., Mutairi, A.A., Manuel, P.: On Certain Topological Indices of Tetrahedral Diamond Lattice. J. Comput. Sci. (2014). (Submitted)

  2. Bača M., Baskoro E.T., Salman A.N.M., Saputro S.W., Suprijanto D.: The metric dimension of regular bipartite graphs. Bull. Math. Soc. Sci. Math. Roum. 54(1), 15–28 (2011)

    Google Scholar 

  3. Beerliova Z., Eberhard F., Erlebach T., Hall A., Hoffmann M., Mihalak M., Ram L.S.: Network discovery and verification. IEEE J. Sel. Areas Commun. 24(12), 2168–2181 (2006)

    Article  Google Scholar 

  4. Brigham R.C., Chartrand G., Dutton R.D., Zhang P.: Resolving domination in graphs. Math. Bohem. 128(1), 25–36 (2003)

    MATH  MathSciNet  Google Scholar 

  5. Caceres J., Hernando C., Mora M., Pelayo I.M., Puertas M.L., Seara C., Wood D.R.: On the metric dimension of Cartesian product of graphs. SIAM J. Discret. Math. 21(2), 273–302 (2007)

    Article  MathSciNet  Google Scholar 

  6. Chartrand G., Eroh L., Johnson M., Oellermann O.: Resolvability in graphs and the metric dimension of a graph. Discret. Appl. Math. 105(1-3), 99–113 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chartrand G., Salehi E., Zhang P.: The partition dimension of a graph. Aequ. Math. 59(1-2), 45–54 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chartrand G., Zhang P.: The theory and applicaitons of resolvability in graphs. Congr. Numer. 160, 47–68 (2003)

    MATH  MathSciNet  Google Scholar 

  9. Chvatal V.: Mastermind. Combinatorica 3(3-4), 325–329 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  10. Erdos P., Renyi A.: On two problems of information theory. Magy. Tud. Akad. Mat. Kut. Int. Kozl. 8, 229–243 (1963)

    MathSciNet  Google Scholar 

  11. Fehr M., Gosselin S., Oellermann O.: The partition dimension of Cayley digraphs. Aequ. Math. 71, 1–18 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Garey M.R., Johnson D.S.: Computers and Intractability: A Guide to the Theory of NP Completeness. W. H. Freeman and Company, San Francisco (1979)

    MATH  Google Scholar 

  13. Goddard W.: Static mastermind. J. Comb. Math. Comb. Comput. 47, 225–236 (2003)

    MATH  MathSciNet  Google Scholar 

  14. Grigorious C., Manuel P., Miller M., Rajan B., Stephen S.: On the metric dimension of circulant and Harary graphs. App. Math. Comput. 248, 47–54 (2014)

    Article  MathSciNet  Google Scholar 

  15. Grigorious C., Stephen S., Rajan B., Miller M., William A.: On the partition dimension of a class of circulant graphs. Inf. Process. Lett. 114, 353–356 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  16. Guy R.K., Nowakowski R.J.: Coin-weighing problems. Am. Math. Mon. 102(2), 164 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. Harary F., Melter R.: On the metric dimension of a graph. Ars Comb. 2, 191–195 (1976)

    MATH  MathSciNet  Google Scholar 

  18. Haynes T.W., Henning M., Howard J.: Locating and total dominating sets in trees. Discret. App. Math. 154, 1293–1300 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hernando C., Mora M., Pelayo I.M., Seara C., Wood D.R.: Extremal graph theory for metric dimension and diameter. Electron. J. Comb. 17, 1–27 (2010)

    MathSciNet  Google Scholar 

  20. Johnson, M.A.: Browsable structure-activity datasets. In: Carbó-Dorca, R., Mezey, P. (eds.) Advances in Molecular Similarity. JAI Press, Connecticut, pp. 153–170 (1998)

  21. Johnson M.A.: Structure-activity maps for visualizing the graph variables arising in drug design. J. Biopharm. Stat. 3, 203–236 (1993)

    Article  MATH  Google Scholar 

  22. Kabatianski, G., Lebedev, V.S., Thorpe, J.: The Mastermind game and the rigidity of Hamming spaces. In: Proc. IEEE International Symposium on Information Theory (ISIT ’00), p. 375. IEEE (2000)

  23. Khuller S., Ragavachari B., Rosenfeld A.: Landmarks in graphs. Discret. Appl. Math. 70, 217–229 (1996)

    Article  MATH  Google Scholar 

  24. Kratica, J., Kovacevic-Vujcic, V., Cangalovic, M., Stojanovic, M.: Minimal doubly resolving sets and the strong metric dimension of some convex polytopes. Appl. Math. Comput. 218, 9790–9801 (2012)

  25. Lindstrom B.: On a combinatory detection problem. I. Magy. Tud. Akad. Mat. Kut. Int. Kozl. 9, 195–207 (1964)

    MathSciNet  Google Scholar 

  26. Manuel P., Rajan B., Rajasingh I., Monica C.: Landmarks in torus networks. J. Discret. Math. Sci. Cryptogr. 9(2), 263–271 (2006)

    Article  MATH  Google Scholar 

  27. Manuel P., Abd-El-Barr M., Rajasingh I., Rajan B.: An efficient representation of Benes networks and its applications. J. Discret. Algorithm 6, 11–19 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  28. Manuel P., Rajan B., Rajasingh I., Monica C.: On minimum metric dimension of honeycomb networks. J. Discret. Algorithms 6, 20–27 (2008)

    Article  MATH  Google Scholar 

  29. Manuel P., Rajan B., Rajasingh I., Monica C.: Landmarks in binary tree derived architectures. Ars Comb. 99, 473–486 (2011)

    MATH  Google Scholar 

  30. Melter R.A., Tomescu I.: Metric bases in digital geometry. Comput. Vis. Graph. Image Process. 25, 113–121 (1984)

    Article  MATH  Google Scholar 

  31. Oellermann O.R., Peters-Fransen J.: The strong metric dimension of graphs and digraphs. Discret. Appl. Math. 155, 356–364 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  32. Saenpholphat V., Zhang P.: Conditional resolvability in graphs: a survey. Int. J. Math. Math. Sci. 38, 1997–2017 (2004)

    Article  MathSciNet  Google Scholar 

  33. Saputro S.W., Simanjuntak R., Uttunggadewa S., Assiyatun H., Baskoro E.T., Salman A.N.M., Bača M.: The metric dimension of the lexicographic product of graphs. Discret. Math. 313, 1045–1051 (2013)

    Article  MATH  Google Scholar 

  34. Sebo A., Tannier E.: On metric generators of graphs. Math. Oper. Res. 29(2), 283–393 (2004)

    Article  MathSciNet  Google Scholar 

  35. Slater P.: Leaves of trees. Congr. Numer. 14, 549–559 (1975)

    MathSciNet  Google Scholar 

  36. Yero I.G., Rodríguez-Velázquez J.A.: A note on the partition dimension of Cartesian product graphs. Appl. Math. Comput. 217(7), 3571–3574 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  37. Yushmanov S.: Estimates for the metric dimension of a graph in terms of the diameters and the number of vertices. Vestn. Moskov. Univ. Ser. I Mat. Mekh. 103, 68–70 (1987)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyriac Grigorious.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manuel, P., Rajan, B., Grigorious, C. et al. On the Strong Metric Dimension of Tetrahedral Diamond Lattice. Math.Comput.Sci. 9, 201–208 (2015). https://doi.org/10.1007/s11786-015-0226-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-015-0226-0

Keywords

Mathematics Subject Classification

Navigation