Skip to main content
Log in

Improving the Accuracy of Chebyshev Tau Method for Nonlinear Differential Problems

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

The spectral properties convergence of the Tau method allow to obtain good approximate solutions for linear differential problems advantageously. However, for nonlinear differential problems the method may produce ill-conditioned matrices issued from the approximations obtained in the iterations from the linearization process. In this work we introduce a procedure to approximate nonlinear terms in the differential equations and a new way to build the corresponding algebraic problem improving the stability of the overall algorithm. Introducing the linearization coefficients of orthogonal polynomials in the Tau method within the iterative process, we can go further in the degree to approximate the solution of the differential problems, avoiding the consequences of ill-conditioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Askey, R.: Orthogonal Polynomials and Special Functions. SIAM, Philadelphia (1975)

    Book  MATH  Google Scholar 

  2. Coleman, J.P.: The Lanczos Tau method. J. Inst. Math. Appl. 17, 85–97 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ebadi, G., Rahimi, M., Shahmorad, S.: Numerical solution of the system of nonlinear Fredholm integro-differential equations by the operational tau method with an error estimation. Scientia Iranica 14(6), 546–554 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Escalante, R.: Parallel strategies for the step by step Tau method. Appl. Math. Comput. 137, 277–292 (2003)

    MathSciNet  MATH  Google Scholar 

  5. Guckenheimer, J.: Dynamics of the van der Pol equation. IEEE Trans. Circuits Syst. 27(11), 983–989 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hosseini, S., Shahmorad, S.: Numerical solution of a class of integro-differential equations by the Tau method with an error estimation. Appl. Math. Comput. 136(2), 559–570 (2003)

    MathSciNet  MATH  Google Scholar 

  7. Hosseini, S., Shahmorad, S.: Tau numerical solution of Fredholm integro-differential equations with arbitrary polynomial bases. Appl. Math. Model. 27(2), 145–154 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kong, W., Wu, X.: Chebyshev tau matrix method for Poisson-type equations in irregular domain. J. Comput. Appl. Math. 228(1), 158–167 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lanczos, C.: Trigonometric interpolation of empirical and analytical functions. J. Math. Phys. 17, 123–199 (1938)

    Article  MATH  Google Scholar 

  10. Liu, K.M., Ortiz, E.L.: Numerical solution of ordinary and partial function-differential eigenvalue problems with the Tau method. Computing 41, 205–217 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Luke, Y.L.: Special Functions and Their Approximations, vol. II. Academic Press, New York (1969)

    MATH  Google Scholar 

  12. Matos, J., Rodrigues, M., Matos, J.: Avoiding similarity transformations in the operational Tau method (submitted)

  13. Matos, J., Rodrigues, M.J., Vasconcelos, P.B.: New implementation of the Tau method for PDEs. J. Comput. Appl. Math. 164, 555–567 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Namasivayam, S., Ortiz, E.L.: Best approximation and the numerical solution of partial differential equations with the Tau method. Portugaliae Mathematica 40, 97–119 (1985)

    MathSciNet  MATH  Google Scholar 

  15. Ortiz, E.L.: The Tau method. SIAM J. Numer. Anal. 6(3), 480–492 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ortiz, E.L.: Step by step Tau method-part I: piecewise polynomial approximations. Comput. Math. Appl. 1, 381–392 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ortiz, E.L.: On the numerical solution of nonlinear and functional differential equations with the Tau method. In: Ansorge, R., Törnig, W. (eds.) Numerical Treatment of Differential Equations in Applications, pp. 127–139. Springer, Berlin, Heidelberg (1978)

  18. Ortiz, E.L., Samara, H.J.: An operational approach to the Tau method for the numerical solution of nonlinear differential equations. Computing 27(1), 15–25 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pour-Mahmoud, J., Rahimi-Ardabili, M., Shahmorad, S.: Numerical solution of the system of Fredholm integro-differential equations by the tau method. Appl. Math. Comput. 168(1), 465–478 (2005)

    MathSciNet  MATH  Google Scholar 

  20. Rodrigues, M.J., Matos, J.: A Tau method for nonlinear dynamical systems. Numer. Algorithms 62(4), 583–600 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Gavina.

Additional information

J. Matos and P. Vasconcelos were partially supported by CMUP (UID/MAT/00144/2013), which is funded by FCT (Portugal) with national (MEC) and European structural funds (FEDER), under the partnership agreement PT2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavina, A., Matos, J. & Vasconcelos, P. Improving the Accuracy of Chebyshev Tau Method for Nonlinear Differential Problems. Math.Comput.Sci. 10, 279–289 (2016). https://doi.org/10.1007/s11786-016-0265-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-016-0265-1

Keywords

Mathematics Subject Classification

Navigation