Skip to main content
Log in

Small Area-Statistik: Methoden und Anwendungen

Small area statistics: methods and applications

  • Originalveröffentlichung
  • Published:
AStA Wirtschafts- und Sozialstatistisches Archiv Aims and scope Submit manuscript

Zusammenfassung

Moderne Haushaltsstichproben sollen zunehmend reliable Informationen bezüglich inhaltlicher und geographischer Subgruppen liefern. Derartige Informationen werden im Allgemeinen alle zehn Jahre auf Basis von Volkszählungen gewonnen. In der aktuellen europäischen Zensus-Runde haben sich einige Länder dazu entschlossen, neue Methoden zu implementieren, welche keine vollständige Auszählung der Bevölkerung mehr benötigen.

Die Schweiz und Deutschland haben sich beispielsweise für einen sogenannten registergestützten Zensus entschieden. Dabei werden zunächst Melderegisterdaten ausgewertet. Mit Hilfe einer zusätzlichen Stichprobe werden weitere Informationen gewonnen, welche auch eine statistische Korrektur möglicher Registerfehler erlauben.

Dieser Paradigmenwechsel in der amtlichen Statistik erfordert aber auch eine adäquate Anpassung der statistischen Methodik. Bei Schätzungen in registergestützten Zensus interessieren dabei nicht nur die Kennwerte für die Gesamtpopulation in Deutschland, sondern auch für Kreise, Verbandsgemeinden und gegebenenfalls auch für Gemeinden; in der Schweiz analog für Kantone und Zählgemeinden.

Je nach Größe dieser Gebiete können sehr kleine Teilstichprobenumfänge auftreten, in denen klassische Schätzverfahren keine ausreichende Genauigkeit mehr garantieren. Moderne Small Area-Schätzmethoden können hier von Nutzen sein.

In der vorliegenden Arbeit sollen anhand geeigneter Anwendungsbeispiele aus der aktuellen Zensusforschung die Methoden und Konzepte der Small Area-Statistik motiviert und dargestellt werden. Neben der Einführung in die Basis-Modelle der Small Area-Statistik wird auch auf einige interessante Erweiterungen eingegangen. Die Methoden liefern gleichzeitig auch eine wesentliche Grundlage einer reliablen Regionalstatistik, welche präzise Statistiken für kleine Gebiete benötigt.

Abstract

Modern household surveys increasingly provide information on subgroups as defined by content or regions. This kind of information, in general, is gained from censuses every ten years. Within the current European census round, some countries have decided to implement new methods which do not rely on a complete enumeration of the population. Switzerland and Germany, for example, are applying a register-assisted census. An exploitation of the register of residents is enriched with information gained from an additional sample. This sample also furnishes possible statistical corrections of the register. This change of paradigm in official statistics urges for adequate statistical methods. In a register-assisted census, additionally to efficient estimates at national level, reliable regional estimates are required. However, the disaggregation may result in very low sample sizes for some of the areas of interest. Whilst classical design-based methods will not produce reliable estimates for these areas, modern model-based small area methods may improve the quality of the estimates by far. The present work focuses on illustrating the small area estimation concepts and methods by two examples of recent research on register-assisted censuses. Additionally to two basic small area models, various recent extensions will be discussed. The successful application of these methods is of crucial importance for obtaining reliable regionalized statistics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7

Literatur

  • Agresti A (2007) An introduction to categorical data analysis, 2. Aufl. Wiley-Interscience, Hoboken

    Book  MATH  Google Scholar 

  • Articus C (2013) Small Area-Verfahren zur Schätzung regionaler Mietpreise. Diplomarbeit, Universität Trier

  • Banerjee S, Carlin B, Gelfand AE (2004) Hierarchical modeling and analysis for spatial data. Chapman & Hall, Boca Raton

    MATH  Google Scholar 

  • Battese GE, Harter RM, Fuller WA (1988) An error-components model for prediction of county crop areas using survey and satellite data. J Am Stat Assoc 83(401):28–36

    Article  Google Scholar 

  • Brackstone GJ (1987) Small area data: policy issues and technical challenges. In: Platek R, Rao J, Särndal C, Singh M (Hrsg) Small area statistics. Wiley, New York, S 3–20

    Google Scholar 

  • Breckling J, Chambers R (1988) M-Quantiles. Biometrika 75(4):761–771

    MathSciNet  MATH  Google Scholar 

  • Breslow N, Clayton D (1993) Approximate inference in generalized linear mixed models. J Am Stat Assoc 88(421):9–25

    MATH  Google Scholar 

  • Burgard JP, Münnich R, Zimmermann T (2013a) The impact of sampling designs on small area estimates for business data (Eingereicht)

  • Burgard JP, Münnich R, Zimmermann T (2013b) Small area modeling under complex survey designs for business data. In: Proceedings of the fourth international conference of establishment surveys, June 11–14, 2012, Montréal, Canada

    Google Scholar 

  • Cassel C, Särndal C, Wretman J (1977) Foundations of inference in survey sampling. Wiley, New York

    MATH  Google Scholar 

  • Chambers R, Chandra H (2013) A random effect block bootstrap for clustered data. J Comput Graph Stat. doi:10.1080/10618600.2012.681216

    Google Scholar 

  • Chambers R, Clark R (2012) An introduction to model-based survey sampling with applications. Oxford statistical science series. Oxford University Press, New York

    Book  MATH  Google Scholar 

  • Chambers R, Tzavidis N (2006) M-Quantile models for small area estimation. Biometrika 93(2):255–268

    Article  MathSciNet  MATH  Google Scholar 

  • Chambers R, Tzavidis N, Salvati N (2009) Borrowing strength over space in small area estimation: comparing parametric, semi-parametric and non-parametric random effects and M-quantile small area models. Centre for statistical & survey methodology working paper series, University of Southhampton

  • Chambers R, Chandra H, Salvati N, Tzavidis N (2013) Outlier robust small area estimation. J R Stat Soc: Ser B (Erscheint demnächst)

  • Chatterjee S, Lahiri P (2007) A simple computational method for estimating mean squared prediction error in general small-area model. In: Proceedings of the section on survey research methods, S 3486–3493

    Google Scholar 

  • Chatterjee S, Lahiri P, Li H (2007) On small area prediction interval problems. In: Proceedings of the section on survey research methods, S 3494–3505

    Google Scholar 

  • Chen S, Lahiri P (2008) On mean squared prediction error estimation in small area estimation problems. Commun Stat, Theory Methods 37(11):1792–1798

    Article  MathSciNet  MATH  Google Scholar 

  • Choudhry GH, Rao JNK, Hidiroglou MA (2012) On sample allocation for efficient domain estimation. Surv Methodol 38(1):23–29

    Google Scholar 

  • Cochran WG (2007) Sampling techniques. Wiley, New York

    Google Scholar 

  • Congdon P (2003) Applied Bayesian modelling. Wiley, Chichester

    Book  MATH  Google Scholar 

  • Congdon P (2005) Bayesian models for categorical data. Wiley, Chichester

    Book  MATH  Google Scholar 

  • Congdon P (2007) Bayesian statistical modelling. Wiley, Chichester

    Google Scholar 

  • Costa A, Satorra A, Ventura E (2004) Improving both domain and total area estimation by composition. Stat Oper Res Transact 28(1):69–86

    MathSciNet  MATH  Google Scholar 

  • Cressie NAC (1993) Statistics for spatial data. Wiley, New York

    Google Scholar 

  • Datta GS (2009) Model-based approach to small area estimation. In: Pfeffermann D, Rao C (Hrsg) Sample surveys: inference and analysis. Handbook of statistics (Handbook of statistics), Bd 29. Elsevier, Oxford, S 251–288. Chapter 32

    Chapter  Google Scholar 

  • Datta GS, Lahiri P (2000) A unified measure of uncertainty of estimated best linear unbiased predictors in small area estimation problems. Stat Sin 10:613–627

    MathSciNet  MATH  Google Scholar 

  • Datta GS, Rao J, Smith DD (2005) On measuring the variability of small area estimators under a basic area level model. Biometrika 92(1):183–196

    Article  MathSciNet  MATH  Google Scholar 

  • Deville J, Särndal C (1992) Calibration estimators in survey sampling. J Am Stat Assoc 87(418):376–382

    Article  MATH  Google Scholar 

  • Dieterle M (2011) Schätzung regionaler Daten mithilfe von Small Area-Schätzmethoden. Wirtsch Stat 12:1212–1218

    Google Scholar 

  • Drew JD, Singh MP, Chaudhry GH (1982) Evaluation of small area estimation techniques for the Canadian labour force survey. Surv Methodol 8:17–47

    Google Scholar 

  • Efron B (1980) The jackknife the bootstrap and other resampling plans. Tech Rep 63, Stanford University, California

  • Elbers C, Lanjouw J, Lanjouw P (2003) Micro-level estimation of poverty and inequality. Econometrica 71(1):355–364

    Article  MATH  Google Scholar 

  • Enderle T, Münnich R (2013) Accuracy of estimates in access panel based surveys. In: Engel U, Jann B, Lynn P, Scherpenzeel A, Sturgis P (Hrsg) Improving survey methods: lessons from recent research. Taylor & Francis, London. Chapter 22

    Google Scholar 

  • Ericksen E, Kadane J, Tukey J (1989) Adjusting the 1980 census of population and housing. J Am Stat Assoc 84(408):927–944

    Article  Google Scholar 

  • Falorsi PD, Righi P (2008) A balanced sampling approach for multi-way stratification designs for small area estimation. Surv Methodol 34(2):223–234

    Google Scholar 

  • Fay RE, Herriot RA (1979) Estimates of income for small places: an application of james-stein procedures to census data. J Am Stat Assoc 74(366):269–277

    Article  MathSciNet  Google Scholar 

  • Gabler S (1990) Minimax solutions in sampling from finite populations. Springer, Berlin

    Book  MATH  Google Scholar 

  • Gabler S, Ganninger M, Münnich RT (2012) Optimal allocation of the sample size to strata under box constraints. Metrika 75(2):151–161

    Article  MathSciNet  MATH  Google Scholar 

  • Gelman A (2007) Struggles with survey weighting and regression modeling. Stat Sci 22(2):153–164

    Article  MathSciNet  MATH  Google Scholar 

  • Gelman AB, Carlin JS, Stern HS, Rubin DB (1995) Bayesian data analysis. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  • Gelman A, Carlin JB, Stern HS, Rubin DB (2004) Bayesian data analysis, texts in statistical science, 2. Aufl. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  • Ghosh M, Rao JNK (1994) Small area estimation: an appraisal (with discussion). Stat Sci 9:55–93

    Article  MathSciNet  MATH  Google Scholar 

  • Godambe VP (1955) A unified theory of sampling from finite populations. J R Stat Soc, Ser B, Stat Methodol 17(2):269–278

    MathSciNet  MATH  Google Scholar 

  • González-Manteiga W, Lombardía MJ, Molina I, Morales D, Santamaría L (2007) Estimation of the mean squared error of predictors of small area linear parameters under a logistic mixed model. Comput Stat Data Anal 51:2720–2733

    Article  MATH  Google Scholar 

  • Hall P, Maiti T (2006) On parametric bootstrap methods for small area prediction. J R Stat Soc, Ser B, Stat Methodol 68(2):221–238

    Article  MathSciNet  MATH  Google Scholar 

  • Hansen M, Hurwitz W (1943) On the theory of sampling from finite populations. Ann Math Stat 14(4):333–362

    Article  MathSciNet  MATH  Google Scholar 

  • Hansen M, Hurwitz W, Madow W (1953) Sample survey methods and theory I. Wiley, New York

    MATH  Google Scholar 

  • Harville DA (1977) Maximum likelihood approaches to variance component estimation and to related problems. J Am Stat Assoc 72(358):320–338

    Article  MathSciNet  MATH  Google Scholar 

  • Hedayat A, Sinha B (1991) Design and inference in finite population sampling. Wiley, New York

    MATH  Google Scholar 

  • Henderson CR (1950) Estimation of genetic parameters. Ann Math Stat 21:309–310

    Google Scholar 

  • Henderson CR (1953) Estimation of variance and covariance components. Biometrics 9(2):226–252

    Article  MathSciNet  Google Scholar 

  • Henderson CR (1975) Best linear unbiased estimation and prediction under a selection model. Biometrics 31(2):423–447

    Article  MATH  Google Scholar 

  • Hobert JP, Casella G (1996) The effect of improper priors on gibbs sampling in hierarchical linear mixed models. J Am Stat Assoc 91:1461–1473

    Article  MathSciNet  MATH  Google Scholar 

  • Horvitz D, Thompson D (1952) A generalization of sampling without replacement from a finite universe. J Am Stat Assoc 47(260):663–685

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang J, Lahiri P (2006) Mixed model prediction and small area estimation. TEST: An Official J Spanish Soc Stat Oper Res 15(1):1–96

    MathSciNet  Google Scholar 

  • Jiang J, Lahiri P, Wan S (2002) A unified jackknife theory for empirical best prediction with m-estimation. Ann Stat 30(6):1782–1810

    Article  MathSciNet  MATH  Google Scholar 

  • Kauermann G, Kuechenhoff H (2011) Stichproben: methoden und praktische umsetzung mit R. Springer, Berlin

    MATH  Google Scholar 

  • Kim G, Chambers R (2009) Regression analysis under incomplete linkage. Working paper 17-09, Centre for Statistical and Survey Methodology, The University of Wollongong

  • Kott PS (2009) Calibration weighting: combining probability samples and linear prediction models. In: Pfeffermann D, Rao C (Hrsg) Sample surveys: inference and analysis. Handbook of statistics (Handbook of statistics), Bd 29. Elsevier, Oxford, S 55–82. Chapter 25

    Chapter  Google Scholar 

  • Lane J (2010) Linking administrative and survey data. In: Marsden PV, Wright JD (Hrsg) Handbook of survey research, Emerald, Bingley, S 659–680

    Google Scholar 

  • Lehtonen R, Veijanen A (1998) Logistic generalized regression estimators. Surv Methodol 24(1):51–55

    Google Scholar 

  • Lehtonen R, Veijanen A (2009) Design-based methods of estimation for domains and small areas. In: Pfeffermann D, Rao C (Hrsg) Sample surveys: inference and analysis. Handbook of statistics (Handbook of statistics), Bd 29. Elsevier, Oxford, S 219–249. Chapter 31

    Chapter  Google Scholar 

  • Lohr S (2010) Sampling: design and analysis. Advanced series. Brooks/Cole, Boston

    Google Scholar 

  • Longford NT (2006) Sample size calculation for small area estimation. Surv Methodol 32(1):87–96

    MathSciNet  Google Scholar 

  • Magg K, Münnich R, Schäfer J (2006) Small area estimation beim Zensus 2011. In: der Statistischen Landesämter F (Hrsg) Amtliche Mikrodaten für die Sozial- und Wirtschaftswissenschaften: Beiträge zu den Nutzerkonferenzen des FDZ der Statistischen Landesämter 2005, Düsseldorf, S 93–105

    Google Scholar 

  • Molina I, Rao J (2010) Small area estimation of poverty indicators. Can J Stat 38(3):369–385

    Article  MathSciNet  MATH  Google Scholar 

  • Moura F, Holt D (1999) Small area estimation using multilevel models. Surv Methodol 25:73–80

    Google Scholar 

  • Münnich R (1997) Gebundene Hochrechnung bei Stichprobenerhebungen mit Hilfe von Splines, Bd 43. Vandenhoeck & Ruprecht, Göttingen

    MATH  Google Scholar 

  • Münnich R (2008) Varianzschätzung in komplexen Erhebungen. Austrian J Stat 37(3&4):319–334

    Google Scholar 

  • Münnich R, Burgard JP (2012) On the influence of sampling design on small area estimates. J Indian Soc Agric Stat 66(1):145–157

    Google Scholar 

  • Münnich R, Schmidt K (2002) Small area estimation in der Bevölkerungsstatistik. Mater Berichte Stat Landesamtes Baden-Württemberg 31:5–11

    Google Scholar 

  • Münnich R, Gabler S, Ganninger M, Burgard JP, Kolb JP (2011) Das Stichprobendesign des registergestützten Zensus 2011. Methoden Daten Analysen 5(1):37–61

    Google Scholar 

  • Münnich R, Gabler S, Ganninger M, Burgard JP, Kolb JP (2012a) Stichprobenoptimierung und Schätzung im Zensus 2011. Statistik und Wissenschaft, Bd 21. Statistisches Bundesamt, Wiesbaden

    Google Scholar 

  • Münnich R, Sachs E, Wagner M (2012b) Calibration benchmarking for small area estimates: an application to the German census 2011. In: Fields institute symposium on the analysis of survey data and small area estimation in honour of the 75th birthday of J.N.K Rao, Ottawa, Canada

    Google Scholar 

  • Münnich R, Sachs E, Wagner M (2012c) Numerical solution of optimal allocation problems in stratified sampling under box constraints. AStA Adv Stat Anal 96(3):435–450

    Article  MathSciNet  Google Scholar 

  • Natarajan R, McCulloch C (1995) A note on the existence of the posterior distribution for a class of mixed models for binomial responses. Biometrika 82:639–643

    Article  MathSciNet  MATH  Google Scholar 

  • Nelder J, Wedderburn R (1972) Generalized linear models. J R Stat Soc 135(3):370–384

    Google Scholar 

  • Neyman J (1934) On the two different aspects of the representative method: the method of stratified sampling and the method of purposive selection. J R Stat Soc 97:558–606

    Article  Google Scholar 

  • Pfeffermann D (1993) The role of sampling weights when modeling survey data. Int Stat Rev 61(2):317–337

    Article  MATH  Google Scholar 

  • Pfeffermann D (2002) Small area estimation – new developments and directions. Int Stat Rev 70:125–143

    Article  MATH  Google Scholar 

  • Pfeffermann D (2011) Modelling of complex survey data: why model? Why is it a problem? How can we approach it? Surv Methodol 37(2):115–136

    Google Scholar 

  • Pfeffermann D (2013) New important developments in small area estimation. Stat Sci 28(1):40–68

    Article  Google Scholar 

  • Pfeffermann D, Rao C (Hrsg) (2009) Sample surveys: inference and analysis. Handbook of statistics, Bd 29. Elsevier, Oxford

    Google Scholar 

  • Pfeffermann D, Sverchkov M (2007) Small-area estimation under informative probability sampling of areas and within the selected areas. J Am Stat Assoc 102(480):1427–1439

    Article  MathSciNet  MATH  Google Scholar 

  • Pfeffermann D, Sverchkov M (2009) Inference under informative sampling. In: Rao CR, Pfeffermann D (Hrsg) Sample surveys: inference and analysis. Handbook of statistics, Bd 29. Elsevier, Oxford, S 455–487. Chapter 39

    Chapter  Google Scholar 

  • Pfeffermann D, Skinner CJ, Holmes DJ, Goldstein H, Rasbash J (1998) Weighting for unequal selection probabilites in multilevel models. J R Stat Soc B 60(1):23–40

    Article  MathSciNet  MATH  Google Scholar 

  • Prasad NGN, Rao JNK (1990) The estimation of the mean squared error of small-area estimators. J Am Stat Assoc 85(409):163–171

    Article  MathSciNet  MATH  Google Scholar 

  • Purcell NJ, Kish L (1979) A biometrics invited paper. Estimation for small domains. Biometrics 35(2):365–384

    Article  MathSciNet  MATH  Google Scholar 

  • Rao JNK (2003) Small area estimation. Wiley series in survey methodology. Wiley, New York

    Book  MATH  Google Scholar 

  • Salvati N, Tzavidis N, Pratesi M, Chambers R (2012) Small area estimation via M-quantile geographically weighted regression. J Spanish Soc Stat Oper Res 21(1):1–28

    MathSciNet  Google Scholar 

  • Särndal CE, Swensson B, Wretman J (1992) Model assisted survey sampling. Springer, New York

    Book  MATH  Google Scholar 

  • Schmid T (2012) Spatial robust small area estimation applied on business data. PhD thesis, University of Trier

  • Schmid T, Münnich R (2013). Spatial robust small area estimation. Resubmitted

  • Schnell R (2010) Record linkage from a technical point of view. In: German Data Forum (RatSWD) (Hrsg) Building on progress. Budrich UniPress, Opladen, S 531–545

    Google Scholar 

  • Schoch T (2012) Robust unit-level small area estimation: a fast algorithm for large datasets. Austrian J Stat 41(4):243–265

    Google Scholar 

  • Schweizer Bundesamt für Statistik (2012) http://www.bfs.admin.ch/bfs/portal/de/index/news/02/03/02.html, zuletzt abgerufen 08.03.2012

  • Sinha SK, Rao JNK (2009) Robust small area estimation. Can J Stat 37(3):381–399

    Article  MathSciNet  MATH  Google Scholar 

  • Sun D, Tsutakawa RK, Speckman PL (1999) Posterior distribution of hierarchical models using CAR(1) distributions. Biometrika 86:341–350

    Article  MathSciNet  MATH  Google Scholar 

  • Torabi M, Rao JNK (2010) Mean squared error estimators of small area means using survey weights. Can J Stat 38(4):598–608

    Article  MathSciNet  MATH  Google Scholar 

  • Verret F, Hidiroglou MA, Rao JNK (2010) Small area estimation under informative sampling. In: Proceedings of the survey methods section SSC annual meeting, May 2010

    Google Scholar 

  • Vogt M (2008) Small Area Estimation: Die Schätzer von Fay-Herriot und Battese-Harter-Fuller. Diplomarbeit, Universität Trier

  • Vogt M (2010) Bayesian spatial modeling: propriety and applications to small area estimation with focus on the German census 2011. OPUS – Universität Trier, Trier

  • Vogt M, Münnich R (2009) On the existence of a posterior distribution for spatial mixed models with binomial responses. Metron - Int J Stat LXVII(2):199–207

    Google Scholar 

  • Wang J, Fuller WA, Qu Y (2008) Small area estimation under a restriction. Surv Methodol 34(1):29–36

    Google Scholar 

  • Whittle P (1954) On stationary processes in the plane. Biometrika 41(3/4):434–449

    Article  MathSciNet  MATH  Google Scholar 

  • Witting H (1985) Mathematische Statistik 1 – Parametrische Verfahren bei festem Stichprobenumfang. Teubner, Stuttgart

    Google Scholar 

  • You Y, Rao JNK (2002) A pseudo-empirical best linear unbiased prediction approach to small area estimation using survey weights. Can J Stat 30(3):431–439

    Article  MathSciNet  MATH  Google Scholar 

  • You Y, Rao JNK, Hidiroglou MA (2013) On the performance of self benchmarked small area estimators under the fay-herriot area level model. Surv Methodol (in press)

Download references

Danksagung

Die Autoren danken persönlich ganz herzlich Herrn Professor Dr. Hans Wolfgang Brachinger für die freundliche Einladung, Small Area-Methoden hier vorzustellen. So war es zu seiner Zeit als Herausgeber der Zeitschrift sein ausdrücklicher Wunsch, diese in Deutschland noch nicht so verbreiteten Methoden, welche beim Zensus 2011 in der Diskussion zur Anwendung standen, eingehend vorzustellen.

Ein besonderer Dank geht auch an die Statistischen Ämter des Bundes und der Länder in Deutschland sowie das Schweizer Bundesamt für Statistik, welche uns im Rahmen der Forschungsarbeiten zu beiden Zensus die Möglichkeit geschaffen haben, geeignete Methoden und Anwendungen weiter zu erforschen.

Ein Dank geht auch an die Forschungsinitiative des Landes Rheinland-Pfalz, welche uns im Rahmen des Forschungszentrums für Regional- und Umweltstatistik unterstützt. Gegenstand der Forschungsarbeiten sind die bereits erwähnten effizienten Algorithmen, das auf Kalibrierung basierende Benchmarking sowie Small Area-Methoden zur Waldinventur.

Danken möchten wir ebenso unseren Kollegen in den Projekten AMELI, BLUE-ETS und dem Partnerprojekt SAMPLE sowie den Kollegen im Zensus-Projekt sowie am Lehrstuhl für zahlreiche inspirierende Diskussionen rund um die Small Area-Statistik.

Schließlich danken wir ganz herzlich dem Associate Editor PD Dr. Siegfried Gabler, der sich dem Begutachtungsprozess dieses Artikels angenommen hat und zusammen mit zwei anonymen Gutachtern mit sehr wertvollen Hinweisen wesentlich zur besseren Lesbarkeit des Artikels beigetragen hat. Ebenso danken die Autoren Herrn Diplom-Volkswirt Florian Ertz für seine große Unterstützung bei der Harmonisierung der Begrifflichkeiten.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Münnich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Münnich, R., Burgard, J.P. & Vogt, M. Small Area-Statistik: Methoden und Anwendungen. AStA Wirtsch Sozialstat Arch 6, 149–191 (2013). https://doi.org/10.1007/s11943-013-0126-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11943-013-0126-1

Schlüsselwörter

JEL Klassifikationen

Keywords

Navigation