Skip to main content

Advertisement

Log in

Cortical Network Dynamics during Foot Movements

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

The present work intends to evaluate the dynamics of the cerebral networks during the preparation and the execution of the foot movement. In order to achieve this objective, we have used mathematical tools capable of estimating the cortical activity via high-resolution EEG techniques. Afterwards we estimated, the instantaneous relationships occurring among the time-series of sixteen regions of interest (ROIs) in the Alpha (7–12 Hz) and Beta (13–29 Hz) band through the adaptive multivariate autoregressive models. Eventually, we evaluated the weighted-topology of the cerebral networks by calculating some theoretical graph indexes. The results show that the main structural changes are encoded in the highest spectral contents (Beta band). In particular, during the execution of the foot movement the cingulate motor areas (CM) work as network “hubs” presenting a large amount of outgoing links to the other ROIs. Moreover, the connectivity pattern changes its structure according to the different temporal stages of the task. In particular, the communication between the ROIs reaches its highest level of efficiency during the preparation of the foot movement, as revealed by the “small-world” property of the network, which is characterized by the presence of abundant clustering connections combined with short average distances between the cortical areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Astolfi, L., Cincotti, F., Babiloni, C., Carducci, F., Basilisco, A., Rossini, P. M., et al. (2005). Estimation of the cortical connectivity by high resolution EEG and structural equation modeling: Simulations and application to finger tapping data. IEEE Transactions on Biomedical Engineering, 52(5), 757–768.

    Article  PubMed  Google Scholar 

  • Astolfi, L., Cincotti, F., Mattia, D., Marciani, M. G., Baccalà, L., De Vico Fallani, F., et al. (2006). A comparison of different cortical connectivity estimators for high resolution EEG recordings. Human Brain Mapping, 28(2), 143–157.

    Article  Google Scholar 

  • Astolfi, L., De Vico Fallani, F., Cincotti, F., Mattia, D., Marciani, M. G., Bufalari, S., et al. (2007). Imaging functional brain connectivity patterns from high-resolution EEG and fMRI via graph theory. Psychophysiology, 44(6), 880–893.

    Article  PubMed  CAS  Google Scholar 

  • Babiloni, F., Babiloni, C., Carducci, F., Fattorini, L., Anello, C., Onorati, P., et al. (1997). High resolution EEG: a new model-dependent spatial deblurring method using a realistically-shaped MR-constructed subject’s head model. Electroencephalography and Clinical Neurophysiology, 102, 69–80.

    Article  PubMed  CAS  Google Scholar 

  • Babiloni, F., Babiloni, C., Locche, L., Cincotti, F., Rossini, P. M., & Carducci, F. (2000). High resolution EEG: source estimates of Laplacian-transformed somatosensory-evoked potentials using a realistic subject head model constructed from magnetic resonance images. Medical & Biological Engineering & Computing, 38, 512–519.

    Article  CAS  Google Scholar 

  • Babiloni, F., Cincotti, F., Babiloni, C., Carducci, F., Basilisco, A., Rossini, P. M., et al. (2005). Estimation of the cortical functional connectivity with the multimodal integration of high resolution EEG and fMRI data by Directed Transfer Function. Neuroimage, 24(1), 118–113.

    Article  PubMed  CAS  Google Scholar 

  • Baccalà, L. A., & Sameshima, K. (2001). Partial Directed Coherence: a new concept in neural structure determination. Biological Cybernetics, 84, 463–474.

    Article  PubMed  Google Scholar 

  • Basar, E. (2004). Memory and brain dynamics: oscillations integrating attention, perception, learning and memory p. 261. Boca Raton, FL: CRC.

    Google Scholar 

  • Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D. U. (2006). Complex networks: structure and dynamics. Physics Reports, 424, 175–308.

    Article  Google Scholar 

  • Chapman, J. P., Chapman, L. J., & Allen, J. J. (1987). The measurement of foot preference. Neuropsychologia, 25(3), 579–584.

    Article  PubMed  CAS  Google Scholar 

  • David, O., Cosmelli, D., & Friston, K. J. (2004). Evaluation of different measures of functional connectivity using a neural mass model. Neuroimage, 21(2), 659–673.

    Article  PubMed  Google Scholar 

  • De Vico Fallani, F., Astolfi, L., Cincotti, F., Mattia, D., Marciani, M. G., Salinari, S., et al. (2007b). Cortical functional connectivity networks in normal and spinal cord injured patients: Evaluation by graph analysis. Hum Brain Mapping, 28, 1334–1336.

    Article  Google Scholar 

  • De Vico Fallani, F., Astolfi, L., Cincotti, F., Mattia, D., Tocci, A., Marciani, M. G., et al. (2007a). Extracting information from cortical connectivity patterns estimated from high resolution EEG recordings: A theoretical graph approach. Brain Topography, 19(3), 125–136.

    Article  PubMed  Google Scholar 

  • Ding, M., Bressler, S. L., Yang, W., & Liang, H. (2000). Short-window spectral analysis of cortical event-related potentials by adaptive multivariate autoregressive modeling: data preprocessing, model validation, and variability assessment. Biological Cybernetics, 83, 35–45.

    Article  PubMed  CAS  Google Scholar 

  • Gerloff, C., Richard, J., Hadley, J., Schulman, A. E., Honda, M., & Hallett, M. (1998). Functional coupling and regional activation of human cortical motor areas during simple, internally paced and externally paced finger movements. Brain, 121, 1513–1531.

    Article  PubMed  Google Scholar 

  • Gevins, A., Le, J., Martin, N., Brickett, P., Desmond, J., & Reutter, B. (1994). High resolution EEG: 124-channel recording, spatial deblurring and MRI integration methods. Electroencephalography and Clinical Neurophysiology, 39, 337–358.

    Article  Google Scholar 

  • Grigorov, M. G. (2005). Global properties of biological networks. DDT, 10, 365–372.

    PubMed  CAS  Google Scholar 

  • Granger, C. W. J. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37, 424–438.

    Article  Google Scholar 

  • Grave de Peralta Menendez, R., & Gonzalez Andino, S. L. (1999). Distributed source models: standard solutions and new developments. In C. Uhl (Ed.) Analysis of neurophysiological brain functioning (pp. 176–201). Berlin: Springer.

    Google Scholar 

  • Hesse, W., Möller, E., Arnold, M., & Schack, B. (2003). The use of time-variant EEG Granger causality for inspecting directed interdependencies of neural assemblies. Journal of Neuroscience Methods, 124, 27–44.

    Article  PubMed  Google Scholar 

  • Hilgetag, C. C., Burns, G. A. P. C., O'Neill, M. A., Scannell, J. W., & Young, M. P. (2000). Anatomical connectivity defines the organization of clusters of cortical areas in the macaque monkey and the cat. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 355, 91–110.

    Article  PubMed  CAS  Google Scholar 

  • Horwitz, B. (2003). The elusive concept of brain connectivity. Neuroimage, 19, 466–470.

    Article  PubMed  Google Scholar 

  • Kaminski, M., & Blinowska, K. (1991). A new method of the description of the information flow in the brain structures. Biological Cybernetics, 65, 203–210.

    Article  PubMed  CAS  Google Scholar 

  • Kus, R., Kaminski, M., & Blinowska, K. J. (2004). Determination of EEG activity propagation: pair-wise versus multichannel estimate. IEEE transactions on Biomedical Engineering, 51(9), 1501–1510.

    Article  PubMed  Google Scholar 

  • Lago-Fernandez, L. F., Huerta, R., Corbacho, F., & Siguenza, J. A. (2000). Fast response and temporal coherent oscillations in small-world networks. Physical Review Letters, 84, 2758–2761.

    Article  PubMed  CAS  Google Scholar 

  • Latora, V., & Marchiori, M. (2001). Efficient behaviour of small-world networks. Physical Review Letters, 87, 198701.

    Article  PubMed  CAS  Google Scholar 

  • Latora, V., & Marchiori, M. (2003). Economic small-world behaviour in weighted networks. European Physical Journal B, 32, 249–263.

    Article  CAS  Google Scholar 

  • Le, J., & Gevins, A. (1993). A method to reduce blur distortion from EEG’s using a realistic head model. IEEE Transactions on Biomedical Engineering, 40, 517–528.

    Article  PubMed  CAS  Google Scholar 

  • Lee, L., Harrison, L. M., & Mechelli, A. (2003). The functional brain connectivity workshop: Report and commentary. Neuroimage, 19, 457–465.

    Article  PubMed  Google Scholar 

  • Micheloyannis, S., Pachou, E., Stam, C. J., Vourkas, M., Erimaki, S., & Tsirka, V. (2006). Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis. Neuroscience Letters, 402, 273–277.

    Article  PubMed  CAS  Google Scholar 

  • Milgram, S. (1967). The small world problem. Psychology Today, pp 60–67.

  • Moeller, E., Schack, B., Arnold, M., & Witte, H. (2001). Instantaneous multivariate EEG coherence analysis by means of adaptive high-dimensional autoregressive models. Journal of Neuroscience Methods, 105, 143–158.

    Article  Google Scholar 

  • Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Review, 45, 167–256.

    Article  Google Scholar 

  • Nunez, P. L. (1995). Neocortical dynamics and human EEG rhythms p. 708. New York: Oxford University Press.

    Google Scholar 

  • Ohara, S., Mima, T., Baba, K., Ikeda, A., Kunieda, T., Matsumoto, R., et al. (2001). Increased synchronization of cortical oscillatory activities between human supplementary motor and primary sensorimotor areas during voluntary movements. Journal of Neuroscience, 21(23), 9377–9386.

    PubMed  CAS  Google Scholar 

  • Pfurtsheller, G., & Lopes da Silva, F. H. (1999). Event-related EEG/EMG synchronizations and desynchronization: basic principles. Clinical Neurophysiology, 110, 1842–1857.

    Article  Google Scholar 

  • Salvador, R., Suckling, J., Coleman, M. R., Pickard, J. D., Menon, D., & Bullmore, E. (2005). Neurophysiological architecture of functional magnetic resonance images of human brain. Cerebral Cortex, 15(9), 1332–1342.

    Article  PubMed  Google Scholar 

  • Sporns, O., Chialvo, D. R., Kaiser, M., & Hilgetag, C. C. (2004). Organization, development and function of complex brain networks. Trends in Cognitive Sciences, 8, 418–425.

    Article  PubMed  Google Scholar 

  • Sporns, O., Tononi, G., & Edelman, G. E. (2000). Connectivity and complexity: the relationship between neuroanatomy and brain dynamics. Neural Networks, 13, 909–922.

    Article  PubMed  CAS  Google Scholar 

  • Sporns, O., & Zwi, J. D. (2004). The small world of the cerebral cortex. Neuroinformatics, 2, 145–162.

    Article  PubMed  Google Scholar 

  • Stam, C. J. (2004). Functional connectivity patterns of human magnetoencephalographic recordings: A ‘small-world’ network? Neuroscience Letters, 355, 25–28.

    Article  PubMed  CAS  Google Scholar 

  • Stam, C. J., Jones, B. F., Manshanden, I., van Cappellen van Walsum, A. M., Montez, T., Verbunt, J. P., et al. (2006a). Magnetoencephalographic evaluation of resting-state functional connectivity in Alzheimer’s disease. Neuroimage, 32, 1335–44.

    Article  PubMed  CAS  Google Scholar 

  • Stam, C. J., Jones, B. F., Nolte, G., Breakspear, M., & Scheltens, P. (2006b). Small-world networks and functional connectivity in Alzheimer’s disease. Cerebral Cortex, 17, 92–99.

    Article  PubMed  Google Scholar 

  • Stam, C. J., & Reijneveld, J. C. (2007). Graph theoretical analysis of complex networks in the brain. Nonlinear Biomedical Physics, 1, 3.

    Article  PubMed  Google Scholar 

  • Strogatz, S. H. (2001). Exploring complex networks. Nature, 410, 268–276.

    Article  PubMed  CAS  Google Scholar 

  • Tononi, G., Sporns, O., & Edelman, G. M. (1994). A measure for brain complexity: relating functional segregation and integration in the nervous system. Proceedings of the National Academy of Sciences of the United States of America, 91, 5033–5037.

    Article  PubMed  CAS  Google Scholar 

  • Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393, 440–442.

    Article  PubMed  CAS  Google Scholar 

  • Yook, S. H., Jeong, H., Barabási, A., & Tu, Y. (2001). Weighted evolving networks. Physical Review Letters, 86(25), 5835–5838.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The present study was performed with the support of the COST EU project NEUROMATH (BMB 0601), of the Minister for Foreign Affairs, Division for the Scientific and Technologic Development, in the framework of a bilateral project between Italy and China (Tsinghua University) and the support of the European Union, through the MAIA project, the European IST Programme FET Project FP6-003758 and by the German Research Foundation (DFG Priority Program SPP 1114, LE 2025/1-3). This paper only reflects the authors’ views and funding agencies are not liable for any use that may be made of the information contained herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio De Vico Fallani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Vico Fallani, F., Astolfi, L., Cincotti, F. et al. Cortical Network Dynamics during Foot Movements. Neuroinform 6, 23–34 (2008). https://doi.org/10.1007/s12021-007-9006-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-007-9006-6

Keywords

Navigation