Skip to main content

Advertisement

Log in

Combining a Patch-based Approach with a Non-rigid Registration-based Label Fusion Method for the Hippocampal Segmentation in Alzheimer’s Disease

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

We provide and evaluate an open-source software solution for automatically hippocampal segmentation from T1-weighted (T1w) magnetic resonance imaging (MRI). The method is applied for measuring the hippocampal volume, which allows discriminate between patients with Alzheimer’s disease (AD) or mild cognitive impairment (MCI) and elderly controls (NC). The method is based on a fast patch-based label fusion method, whose selected patches and their weights are calculated from a combination of similarity measures between patches using intensity-based distances and labeling-based distances. These combined similarity measures produces better selection of the patches, and their weights are more robust. The algorithm is trained with the Harmonized Hippocampal Protocol (HarP). The proposal is compared with FreeSurfer and other label fusion methods. To evaluate the performance and the robustness of the proposed label fusion method, we employ two databases of T1w MRI of human brains. For AD vs NC, we obtain a high degree of accuracy, approximately 90 %. For MCI vs NC, we obtain accuracies around 75 %. The average time for the hippocampal segmentation from a T1w MRI is less than 17 minutes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aljabar, P., Heckemann, R., Hammers, A., Hajnal, J., & Rueckert, D. (2009). Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy. Neuroimage, 46, 726– 738.

    Article  CAS  PubMed  Google Scholar 

  • Artaechevarria, X., Muñoz-Barrutia, A., & Ortiz-de Solorzano, C. (2009). Combination strategies in multi-atlas image segmentation: Application to brain MR data. IEEE Transactions on Medical Imaging, 28, 1266–1277.

    Article  PubMed  Google Scholar 

  • Asman, A.J., & Landman, B.A. (2013). Non-local statistical label fusion for multi-atlas segmentation. Medical Image Analysis, 17, 194–208.

    Article  PubMed  Google Scholar 

  • Barnes, C., Shechtman, E., Finkelstein, A., & Goldman, D. (2009). Patchmatch: a randomized correspondence algorithm for structural image editing. ACM Transactions on Graphics-TOG, 28, 24.

    Google Scholar 

  • Battaglini, M., Smith, S.M., Brogi, S., & De Stefano, N. (2008). Enhanced brain extraction improves the accuracy of brain atrophy estimation. Neuroimage, 40, 583–589.

    Article  PubMed  Google Scholar 

  • Boccardi, M., Bocchetta, M., Apostolova, L.G., Barnes, J., Bartzokis, G., Corbetta, G., DeCarli, C., Firbank, M., Ganzola, R., Gerritsen, L., & et al. (2015). Delphi definition of the eadc-adni harmonized protocol for hippocampal segmentation on magnetic resonance. Alzheimer’s & Dementia, 11, 126–138.

    Article  Google Scholar 

  • Boccardi, M., Bocchetta, M., Morency, F.C., Collins, D.L., Nishikawa, M., Ganzola, R., Grothe, M.J., Wolf, D., Redolfi, A., Pievani, M., & et al. (2015). Training labels for hippocampal segmentation based on the EADC-ADNI harmonized hippocampal protocol. Alzheimer’s & Dementia, 11, 175–183.

    Article  Google Scholar 

  • Boccardi, M., Ganzola, R., Bocchetta, M., Pievani, M., Redolfi, A., Bartzokis, G., Camicioli, R., Csernansky, J. G., de Leon, M. J., de Toledo-Morrell, L., & et al. (2011). Survey of protocols for the manual segmentation of the hippocampus: preparatory steps towards a joint EADC-ADNI harmonized protocol. Journal of Alzheimer’s Disease, 26, 61–75.

  • Boykov, Y., & Kolmogorov, V. (2004). An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26, 1124–1137.

    Article  PubMed  Google Scholar 

  • Buades, A., Coll, B., & Morel, J. (2006). A review of image denoising algorithms, with a new one. Multiscale Modeling and Simulation, 4, 490–530.

    Article  Google Scholar 

  • Buckner, R.L., Head, D., Parker, J., Fotenos, A.F., Marcus, D., Morris, J.C., & Snyder, A.Z. (2004). A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: reliability and validation against manual measurement of total intracranial volume. Neuroimage, 23, 724–738.

    Article  PubMed  Google Scholar 

  • Clerx, L., van Rossum, I.A., Burns, L., Knol, D.L., Scheltens, P., Verhey, F., Aalten, P., Lapuerta, P., van de Pol, L., van Schijndel, R., & et al. (2013). Measurements of medial temporal lobe atrophy for prediction of Alzheimer’s disease in subjects with mild cognitive impairment. Neurobiology of Aging, 34, 2003– 2013.

  • Collins, D.L., & Pruessner, J.C. (2010). Towards accurate, automatic segmentation of the hippocampus and amygdala from MRI by augmenting ANIMAL with a template library and label fusion. Neuroimage, 52, 1355–1366.

    Article  PubMed  Google Scholar 

  • Coupé, P., Manjón, J.V., Fonov, V., Pruessner, J., Robles, M., & Collins, D.L. (2011). Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation. Neuroimage, 54, 940–954.

    Article  PubMed  Google Scholar 

  • Coupé, P., Yger, P., Prima, S., Hellier, P., Kervrann, C., & Barillot, C. (2008). An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Transactions on Medical Imaging, 27, 425–441.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehéricy, S., Habert, M.O., Chupin, M., Benali, H., Colliot, O., & et al. (2011). Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. Neuroimage, 56, 766–781.

    Article  PubMed  Google Scholar 

  • DeLong, E.R., DeLong, D.M., & Clarke-Pearson, D.L. (1988). Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics, 837–845.

  • Derpanis, K.G., & Gryn, J.M. (2005). Three-dimensional nth derivative of Gaussian separable steerable filters, In IEEE International Conference on Image Processing, (Vol. 3 pp. III553–6): IEEE.

  • Dice, L. (1945). Measures of the amount of ecologic association between species. Ecology, 26, 297–302.

    Article  Google Scholar 

  • Dubois, B., Feldman, H.H., Jacova, C., DeKosky, S.T., Barberger-Gateau, P., Cummings, J., Delacourte, A., Galasko, D., Gauthier, S., Jicha, G., & et al. (2007). Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS–ADRDA criteria. The Lancet Neurology, 6, 734–746.

    Article  PubMed  Google Scholar 

  • Evans, A.C., Janke, A.L., Collins, D.L., & Baillet, S. (2012). Brain templates and atlases. Neuroimage, 62, 911–922.

    Article  PubMed  Google Scholar 

  • Frisoni, G.B., Fox, N. C., Jack, C.R., Scheltens, P., & Thompson, P.M. (2010). The clinical use of structural MRI in Alzheimer disease. Nature Reviews Neurology, 6, 67–77.

    Article  PubMed  PubMed Central  Google Scholar 

  • Frisoni, G.B., Jack, C.R., Bocchetta, M., Bauer, C., Frederiksen, K.S., Liu, Y., Preboske, G., Swihart, T., Blair, M., Cavedo, E., & et al. (2015). The EADC-ADNI Harmonized Protocol for manual hip- pocampal segmentation on magnetic resonance: Evidence of validity. Alzheimer’s & Dementia, 11, 111–125.

    Article  Google Scholar 

  • Giraud, R., Ta, V.T., Papadakis, N., Manjón, J.V., Collins, D.L., Coupé, P., Initiative, A.D.N., & et al. (2016). An optimized patchmatch for multi-scale and multi-feature label fusion. NeuroImage, 124, 770–782.

    Article  PubMed  Google Scholar 

  • Gonzales, R.C., & Woods, R.E. (2002). Digital image processing. New Jersey: Prentice Hall, 6, 1–689.

    Google Scholar 

  • Iglesias, J.E., Augustinack, J.C., Nguyen, K., Player, C.M., Player, A., Wright, M., Roy, N., Frosch, M.P., McKee, A.C., Wald, L.L., & et al. (2015). A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI. NeuroImage, 115, 117– 137.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jack, C., Shiung, M., Gunter, J., Obrien, P., Weigand, S., Knopman, D., Boeve, B., Ivnik, R., Smith, G., Cha, R., & et al. (2004). Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD. Neurology, 62, 591–600.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jack, C.R., Bernstein, M.A., Fox, N.C., Thompson, P., Alexander, G., Harvey, D., Borowski, B., Britson, P.J., L Whitwell, J., Ward, C., & et al. (2008). The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. Journal of Magnetic Resonance Imaging, 27, 685–691.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage, 17, 825– 841.

    Article  PubMed  Google Scholar 

  • Khan, W., Westman, E., Jones, N., Wahlund, L.O., Mecocci, P., Vellas, B., Tsolaki, M., Kłoszewska, I., Soininen, H., Spenger, C., & et al. (2015). Automated hippocampal subfield measures as predictors of conversion from mild cognitive impairment to Alzheimer’s disease in two independent cohorts. Brain topography, 28, 746–759.

    Article  PubMed  Google Scholar 

  • Klein, A., Andersson, J., Ardekani, B.A., Ashburner, J., Avants, B., Chiang, M.C., Christensen, G.E., Collins, D.L., Gee, J., Hellier, P., & et al. (2009). Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage, 46, 786–802.

    Article  PubMed  PubMed Central  Google Scholar 

  • Klein, S., Staring, M., Murphy, K., Viergever, M., & Pluim, J. (2010). Elastix: a toolbox for intensity-based medical image registration. IEEE Transactions on Medical Imaging, 29, 196–205.

    Article  PubMed  Google Scholar 

  • Klein, S., Staring, M., & Pluim, J. (2007). Evaluation of optimization methods for nonrigid medical image registration using mutual information and B-splines. IEEE Transactions on Image Processing, 16, 2879–2890.

    Article  PubMed  Google Scholar 

  • Konrad, C., Ukas, T., Nebel, C., Arolt, V., Toga, A.W., & Narr, K. (2009). Defining the human hippocampus in cerebral magnetic resonance imagesan overview of current segmentation protocols. Neuroimage, 47, 1185–1195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lafferty, J., McCallum, A., & Pereira, F. (2001). Conditional random fields: Probabilistic models for segmenting and labeling sequence data, In International Conference on Machine Learning (pp. 282–289).

    Google Scholar 

  • Leung, K.K., Barnes, J., Ridgway, G.R., Bartlett, J.W., Clarkson, M.J., Macdonald, K., Schuff, N., Fox, N.C., Ourselin, S., & et al. (2010). Automated cross-sectional and longitudinal hippocampal volume measurement in mild cognitive impairment and Alzheimer’s disease. Neuroimage, 51, 1345–1359.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lotjonen, J., Wolz, R., Koikkalainen, J., Thurfjell, L., Waldemar, G., Soininen, H., & Rueckert, D. (2010). Fast and robust multi-atlas segmentation of brain magnetic resonance images. Neuroimage, 49, 2352–2365.

    Article  PubMed  Google Scholar 

  • Mount, D.M., & Arya, S. (2010). Ann: A library for approximate nearest neighbor searching. http://www.cs.umd.edu/mount/ANN/. Accessed: 20 January 2015 version 1.1.2.

  • Nestor, S.M., Gibson, E., Gao, F.Q., Kiss, A., & Black, S.E. (2013). A direct morphometric comparison of five labeling protocols for multi-atlas driven automatic segmentation of the hippocampus in Alzheimer’s disease. Neuroimage, 66, 50–70.

    Article  PubMed  Google Scholar 

  • Pineda-Pardo, J.A., Bruña, R., Woolrich, M., Marcos, A., Nobre, A.C., Maestú, F., & Vidaurre, D. (2014). Guiding functional connectivity estimation by structural connectivity in meg: an application to discrimination of conditions of mild cognitive impairment. NeuroImage, 101, 765–777.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pineda-Pardo, J.A., Garcés, P., López, M.E., Aurtenetxe, S., Cuesta, P., Marcos, A., Montejo, P., Yus, M., Hernández-Tamames, J.A., del Pozo, F., & et al. (2014). White matter damage disorganizes brain functional networks in amnestic mild cognitive impairment. Brain connectivity, 4, 312–322.

    Article  PubMed  PubMed Central  Google Scholar 

  • Platero, C., & Tobar, M.C. (2015). A label fusion method using conditional random fields with higher-order potentials: Application to hippocampal segmentation. Artificial Intelligence in Medicine, 64, 117–129.

    Article  PubMed  Google Scholar 

  • Pohl, K.M., Fisher, J., Shenton, M., McCarley, R.W., Grimson, W.E.L., Kikinis, R., & Wells, W.M. (2006). Logarithm odds maps for shape representation, In Medical Image Computing and Computer-Assisted Intervention–MICCAI. Springer (pp. 955–963).

    Google Scholar 

  • Roche, F., Schaerer, J., Gouttard, S., Istace, A., Belaroussi, B., Yu, H. J., Bracoud, L., Pachai, C., & DeCarli, C. (2014). Accuracy of bmas hippocampus segmentation using the harmonized hippocampal protocol. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 10, P56.

    Article  Google Scholar 

  • Rohlfing, T., Brandt, R., Menzel, R., Russakoff, D., & Maurer, C. (2005). Quo vadis, atlas-based segmentation?. Handbook of Biomedical Image Analysis, 435–486.

  • Rousseau, F., Habas, P.A., & Studholme, C. (2011). A supervised patch-based approach for human brain labeling. IEEE Transactions on Medical Imaging, 30, 1852–1862.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rueckert, D., Sonoda, L., Hayes, C., Hill, D., Leach, M., & Hawkes, D. (1999). Nonrigid registration using free-form deformations: application to breast MR images. IEEE Transactions on Medical Imaging, 18, 712–721.

    Article  CAS  PubMed  Google Scholar 

  • Sabuncu, M., Yeo, B., Van Leemput, K., Fischl, B., & Golland, P. (2010). A generative model for image segmentation based on label fusion. IEEE Transactions on Medical Imaging, 29, 1714– 1729.

  • Shotton, J., Johnson, M., & Cipolla, R. (2008). Semantic texton forests for image categorization and segmentation, In IEEE Conference on Computer Vision and Pattern Recognition (pp. 1–8).

    Google Scholar 

  • Smith, S.M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17, 143–155.

    Article  PubMed  Google Scholar 

  • Song, Z., Tustison, N., Avants, B., & Gee, J. (2006). Integrated graph cuts for brain MRI segmentation. Medical Image Computing and Computer-Assisted Intervention–MICCAI, 4191, 831–838.

    Google Scholar 

  • Stein, J.L., Medland, S.E., Vasquez, A.A., Hibar, D.P., Senstad, R.E., Winkler, A.M., Toro, R., Appel, K., Bartecek, R., Bergmann, Ø., & et al. (2012). Identification of common variants associated with human hippocampal and intracranial volumes. Nature Genetics, 44, 552–561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ta, V.T., Giraud, R., Collins, D.L., & Coupé, P. (2014). Optimized patchmatch for near real time and accurate label fusion, In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2014 (pp. 105–112): Springer.

  • Tangaro, S., Amoroso, N., Boccardi, M., Bruno, S., Chincarini, A., Ferraro, G., Frisoni, G., Maglietta, R., Redolfi, A., Rei, L., & et al. (2014). Automated voxel-by-voxel tissue classification for hippocampal segmentation: methods and validation. Physica Medica, 30, 878–887.

    Article  CAS  PubMed  Google Scholar 

  • Thévenaz, P., & Unser, M. (2000). Optimization of mutual information for multiresolution image registration. IEEE Transactions on Image Processing, 9, 2083–2099.

    Article  PubMed  Google Scholar 

  • Tong, T., Wolz, R., Coupé, P., Hajnal, J.V., & Rueckert, D. (2013). Segmentation of MR images via discriminative dictionary learning and sparse coding: application to hippocampus labeling. Neuroimage, 76, 11–23.

    Article  PubMed  Google Scholar 

  • Viola, P., & Wells III, W.M. (1997). Alignment by maximization of mutual information. International Journal of Computer Vision, 24, 137–154.

    Article  Google Scholar 

  • Wang, H., Suh, J.W., Das, S.R., Pluta, J.B., Craige, C., & Yushkevich, P.A. (2013). Multi-atlas segmentation with joint label fusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35, 611–623.

    Article  PubMed  Google Scholar 

  • Wang, L., Shi, F., Gao, Y., Li, G., Gilmore, J.H., Lin, W., & Shen, D. (2014). Integration of sparse multi-modality representation and anatomical constraint for isointense infant brain mr image segmentation. NeuroImage, 89, 152–164.

    Article  PubMed  Google Scholar 

  • Wang, Z., Bovik, A.C., Sheikh, H.R., & Simoncelli, E.P. (2004). Image quality assessment: from error visibility to structural similarity. IEEE Transactions onImage Processing, 13, 600–612.

    Article  Google Scholar 

  • Warfield, S., Zou, K., & Wells, W. (2004). Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Transactions on Medical Imaging, 23, 903–921.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu, G., Wang, Q., Zhang, D., Nie, F., Huang, H., & Shen, D. (2014). A generative probability model of joint label fusion for multi-atlas based brain segmentation. Medical Image Analysis, 18, 881– 890.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Data collection for this study was funded by the ADNI (National Institutes of Health Grant U01 AG024904) and the Laboratory of Cognitive and Computational Neuroscience (LCCN) of the Center of Biomedical Technology (Technical University of Madrid). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering and and through generous contributions from the following: Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; GE Healthcare; Innogenetics, N.V.; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Synarc Inc.; and Takeda Pharmaceutical Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Platero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Platero, C., Tobar, M.C. Combining a Patch-based Approach with a Non-rigid Registration-based Label Fusion Method for the Hippocampal Segmentation in Alzheimer’s Disease. Neuroinform 15, 165–183 (2017). https://doi.org/10.1007/s12021-017-9323-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-017-9323-3

Keywords

Navigation