Skip to main content

Advertisement

Log in

Longitudinal Neuroimaging Hippocampal Markers for Diagnosing Alzheimer’s Disease

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Hippocampal atrophy measures from magnetic resonance imaging (MRI) are powerful tools for monitoring Alzheimer’s disease (AD) progression. In this paper, we introduce a longitudinal image analysis framework based on robust registration and simultaneous hippocampal segmentation and longitudinal marker classification of brain MRI of an arbitrary number of time points. The framework comprises two innovative parts: a longitudinal segmentation and a longitudinal classification step. The results show that both steps of the longitudinal pipeline improved the reliability and the accuracy of the discrimination between clinical groups. We introduce a novel approach to the joint segmentation of the hippocampus across multiple time points; this approach is based on graph cuts of longitudinal MRI scans with constraints on hippocampal atrophy and supported by atlases. Furthermore, we use linear mixed effect (LME) modeling for differential diagnosis between clinical groups. The classifiers are trained from the average residue between the longitudinal marker of the subjects and the LME model. In our experiments, we analyzed MRI-derived longitudinal hippocampal markers from two publicly available datasets (Alzheimer’s Disease Neuroimaging Initiative, ADNI and Minimal Interval Resonance Imaging in Alzheimer’s Disease, MIRIAD). In test/retest reliability experiments, the proposed method yielded lower volume errors and significantly higher dice overlaps than the cross-sectional approach (volume errors: 1.55% vs 0.8%; dice overlaps: 0.945 vs 0.975). To diagnose AD, the discrimination ability of our proposal gave an area under the receiver operating characteristic (ROC) curve (AUC) \(=\) 0.947 for the control vs AD, AUC \(=\) 0.720 for mild cognitive impairment (MCI) vs AD, and AUC \(=\) 0.805 for the control vs MCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albert, M.S., DeKosky, S.T., Dickson, D., Dubois, B., Feldman, H.H., Fox, N.C., Gamst, A., Holtzman, D.M., Jagust, W.J., Petersen, R.C., et al. (2011). The diagnosis of mild cognitive impairment due to alzheimer’s disease: recommendations from the national institute on aging-alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7(3), 270–279.

    Article  Google Scholar 

  • Apostolova, L.G., Morra, J.H., Green, A.E., Hwang, K.S., Avedissian, C., Woo, E., Cummings, J.L., Toga, A.W., Jack, C.R., Weiner, M.W., et al. (2010). Automated 3D mapping of baseline and 12-month associations between three verbal memory measures and hippocampal atrophy in 490 ADNI subjects. NeuroImage, 51(1), 488–499.

    Article  PubMed  Google Scholar 

  • Artaechevarria, X., Muñoz-barrutia, A., Ortiz-de Solorzano, C. (2009). Combination strategies in multi-atlas image segmentation: Application to brain MR data. IEEE Transactions on Medical Imaging, 28(8), 1266–1277.

    Article  PubMed  Google Scholar 

  • Aubert-Broche, B., Fonov, V.S., García-Lorenzo, D., Mouiha, A., Guizard, N., Coupé, P., Eskildsen, S.F., Louis Collins, D. (2013). A new method for structural volume analysis of longitudinal brain mri data and its application in studying the growth trajectories of anatomical brain structures in childhood. NeuroImage, 82, 393–402.

    Article  CAS  PubMed  Google Scholar 

  • Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D. (2009). Patchmatch: a randomized correspondence algorithm for structural image editing. ACM Transactions on Graphics-TOG, 28(3), 24.

    Google Scholar 

  • Bernal-Rusiel, J.L., Greve, D.N., Reuter, M., Fischl, B., Sabuncu, M.R. (2013). Alzheimer’s Disease Neuroimaging Initiative, et al. Statistical analysis of longitudinal neuroimage data with linear mixed effects models. NeuroImage, 66, 249–260.

    Article  PubMed  Google Scholar 

  • Boccardi, M., Ganzola, R., Bocchetta, M., Pievani, M., Redolfi, A., Bartzokis, G., Camicioli, R., Csernansky, J.G., de Leon, M.J., de Toledo-Morrell, L., et al. (2011). Survey of protocols for the manual segmentation of the hippocampus: preparatory steps towards a joint EADC-ADNI harmonized protocol. Journal of Alzheimer’s Disease, 26, 61–75.

    Article  PubMed  Google Scholar 

  • Boykov, Y., & Kolmogorov, V. (2004). An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(9), 1124–1137.

    Article  PubMed  Google Scholar 

  • Bradley, T., Wyman, B.T., Harvey, D.J., Crawford, K., Bernstein, M.A., Carmichael, O., Cole, P.E., Crane, P.K., DeCarli, C., Fox, N.C., Gunter, J.L., et al. (2013). Standardization of analysis sets for reporting results from ADNI MRI data. Alzheimer’s & Dementia, 9(3), 332–337.

    Article  Google Scholar 

  • Chételat, G., Fouquet, M., Kalpouzos, G., Denghien, I., De La Sayette, V., Viader, F., Mézenge, F., Landeau, B., Baron, J.-C., Eustache, F., et al. (2008). Three-dimensional surface mapping of hippocampal atrophy progression from MCI to AD and over normal aging as assessed using voxel-based morphometry. Neuropsychologia, 46(6), 1721–1731.

    Article  PubMed  Google Scholar 

  • Chincarini, A., Sensi, F., Rei, L., Gemme, G., Squarcia, S., Longo, R., Brun, F., Tangaro, S., Bellotti, R., Amoroso, N., et al. (2016). Integrating longitudinal information in hippocampal volume measurements for the early detection of Alzheimer’s disease. NeuroImage, 125, 834–847.

    Article  PubMed  Google Scholar 

  • Clifford, R., Jack, C.R., Bernstein, M.A., Fox, N.C., Thompson, P., Alexander, G., Harvey, D., Borowski, B., Britson, P.J., Whitwell, J.L., Ward, C., et al. (2008). The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. Journal of Magnetic Resonance Imaging, 27(4), 685–691.

    Article  Google Scholar 

  • Coupé, P., Manjón, J.V., Fonov, V., Pruessner, J., Robles, M., Louis Collins, D. (2011). Patch-based segmentation using expert priors application to hippocampus and ventricle segmentation. NeuroImage, 54(2), 940–954.

    Article  PubMed  Google Scholar 

  • Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehéricy, S., Habert, M.-O., Chupin, M., Benali, H., Colliot, O., et al. (2011). Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. NeuroImage, 56(2), 766–781.

    Article  PubMed  Google Scholar 

  • DeLong, E.R., DeLong, D.M., Clarke-Pearson, D.L. (1988). Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 837–845.

  • Devanand, D.P., Pradhaban, G., Liu, X., Khandji, A., De Santi, S., Segal, S., Rusinek, H., Pelton, G.H., Honig, L.S., Mayeux, R., et al. (2007). Hippocampal and entorhinal atrophy in mild cognitive impairment prediction of Alzheimer disease. Neurology, 68(11), 828–836.

    Article  CAS  PubMed  Google Scholar 

  • Dubois, B., Feldman, H.H., Jacova, C., DeKosky, S.T., Barberger-Gateau, P., Cummings, J., Delacourte, A., Galasko, D., Gauthier, S., Jicha, G., et al. (2007). Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS–ADRDA criteria. The Lancet Neurology, 6(8), 734–746.

    Article  PubMed  Google Scholar 

  • Eskildsen, S.F., Coupé, P., Fonov, V.S., Pruessner, J.C., Louis Collins, D. (2015). Structural imaging biomarkers of alzheimer’s disease: predicting disease progression. Neurobiology of Aging, 36, S23–S31.

    Article  CAS  PubMed  Google Scholar 

  • Evans, A.C., Janke, A.L., Louis Collins, D., Baillet, S. (2012). Brain templates and atlases. NeuroImage, 62(2), 911–922.

    Article  PubMed  Google Scholar 

  • Fischl, B., Salat, D.H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., Van Der Kouwe, A., Killiany, R., Kennedy, D., Klaveness, S. (2002). Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron, 33(3), 341–355.

    Article  CAS  PubMed  Google Scholar 

  • Folstein, M.F., Folstein, S.E., McHugh, P.R. (1975). Mini-mental state: a practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198.

    Article  CAS  PubMed  Google Scholar 

  • Fox, N.C., Ridgway, G.R., Schott, J.M. (2011). Algorithms, atrophy and Alzheimer’s disease: cautionary tales for clinical trials. NeuroImage, 57(1), 15–18.

    Article  PubMed  Google Scholar 

  • Frankó, E., & Joly, O. (2013). Evaluating Alzheimer’s disease progression using rate of regional hippocampal atrophy. PloS one, 8(8), e71354.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fraser, M.A., Shaw, M.E., Cherbuin, N. (2015). A systematic review and meta-analysis of longitudinal hippocampal atrophy in healthy human ageing. NeuroImage, 112, 364–374.

    Article  PubMed  Google Scholar 

  • Frisoni, G.B., Fox, N.C., Jack, C.R., Scheltens, P., Thompson, P.M. (2010). The clinical use of structural MRI in Alzheimer disease. Nature Reviews Neurology, 6(2), 67–77.

    Article  PubMed  PubMed Central  Google Scholar 

  • Frisoni, G.B., Jack, C.R., Bocchetta, M., Bauer, C., Frederiksen, K.S., Liu, Y., Preboske, G., Swihart, T., Blair, M., Cavedo, E., et al. (2015). The EADC-ADNI Harmonized Protocol for manual hippocampal segmentation on magnetic resonance: Evidence of validity. Alzheimer’s & Dementia, 11(2), 111–125.

    Article  Google Scholar 

  • Giraud, R., Ta, V.-T., Papadakis, N., Manjón, J.V., Louis Collins, D., Coupé, P., ADNI et al. (2016). An optimized patchmatch for multi-scale and multi-feature label fusion. NeuroImage, 124, 770–782.

    Article  PubMed  Google Scholar 

  • Iglesias, J.E., Van Leemput, K., Augustinack, J., Insausti, R., Fischl, B., Reuter, M. (2016). ADNI, et al. Bayesian longitudinal segmentation of hippocampal substructures in brain MRI using subject-specific atlases. NeuroImage, 141, 542–555.

    Article  PubMed  Google Scholar 

  • Jack, C.R., Shiung, M.M., Gunter, J.L., Obrien, P.C., Weigand, S.D., Knopman, D.S., Boeve, B.F., Ivnik, R.J., Smith, G.E., Cha, R.H., et al. (2004). Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD. Neurology, 62(4), 591–600.

    Article  PubMed  Google Scholar 

  • Jenkinson, M., Bannister, P., Brady, M., Smith, S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage, 17(2), 825–841.

    Article  PubMed  Google Scholar 

  • Kim, J., Valdes-Hernandez, M.D.C., Royle, N.A., Park, J. (2015). Hippocampal shape modeling based on a progressive template surface deformation and its verification. IEEE Transactions on Medical Imaging, 34(6), 1242–1261.

    Article  PubMed  Google Scholar 

  • Klein, A., Andersson, J., Ardekani, B.A., Ashburner, J., Avants, B., Chiang, M.-C., Christensen, G.E., Louis Collins, D., Gee, J., Hellier, P., et al. (2009). Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage, 46(3), 786–802.

    Article  PubMed  Google Scholar 

  • Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.W. (2010). Elastix: a toolbox for intensity-based medical image registration. IEEE Transactions on Medical Imaging, 29(1), 196–205.

    Article  PubMed  Google Scholar 

  • Korolev, I.O., Symonds, L.L., Bozoki, A.C. (2016). Alzheimer?s Disease Neuroimaging Initiative, et al. Predicting progression from mild cognitive impairment to alzheimer’s dementia using clinical, mri, and plasma biomarkers via probabilistic pattern classification. Plos One, 11(2), e0138866.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • La Joie, R, Fouquet, M, Mézenge, F, Landeau, B, Villain, N, Mevel, K, Pélerin, A, Eustache, F, Desgranges, B, Chételat, G. (2010). Differential effect of age on hippocampal subfields assessed using a new high-resolution 3T MR sequence. Neuroimage, 53(2), 506–514.

    Article  PubMed  Google Scholar 

  • Lafferty, J., McCallum, A., Pereira, F.C. (2001). Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In International conference on machine learning (pp. 282–289).

  • Lawrence, E., Vegvari, C., Ower, A., Hadjichrysanthou, C., De Wolf, F., Anderson, R.M. (2017). A systematic review of longitudinal studies which measure alzheimers disease biomarkers. Journal of Alzheimer’s Disease, 59(4), 1359–1379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leung, K.K., Barnes, J., Ridgway, G.R., Bartlett, J.W., Clarkson, M.J., Macdonald, K., Schuff, N., Fox, N.C., Ourselin, S., et al. (2010). Automated cross-sectional and longitudinal hippocampal volume measurement in mild cognitive impairment and Alzheimer’s disease. NeuroImage, 51(4), 1345–1359.

    Article  PubMed  Google Scholar 

  • Lotjonen, J.M.P., Wolz, R., Koikkalainen, J.R., Thurfjell, L., Waldemar, G., Soininen, H., Rueckert, D. (2010). Fast and robust multi-atlas segmentation of brain magnetic resonance images. NeuroImage, 49(3), 2352–2365.

    Article  PubMed  Google Scholar 

  • Louis Collins, D., & Pruessner, J.C. (2010). Towards accurate, automatic segmentation of the hippocampus and amygdala from MRI by augmenting ANIMAL with a template library and label fusion. NeuroImage, 52(4), 1355–1366.

    Article  PubMed  Google Scholar 

  • Malone, I.B., Cash, D., Ridgway, G.R., MacManus, D.G., Ourselin, S., Fox, N.C., Schott, J.M. (2013). MIRIAD - Public release of a multiple time point Alzheimer’s MR imaging dataset. NeuroImage, 70, 33–36.

    Article  PubMed  Google Scholar 

  • Mert, R., Sabuncu, M.R., Desikan, R.S., Sepulcre, J., Yeo, B.T.T., Liu, H., Schmansky, N.J., Reuter, M., Weiner, M.W., Buckner, R.L., Sperling, R.A., et al. (2011). The dynamics of cortical and hippocampal atrophy in Alzheimer disease. Archives of neurology, 68(8), 1040–1048.

    Article  Google Scholar 

  • McKhann, G.M., Knopman, D.S., Chertkow, H., Hyman, B.T., Jack, C.R., Kawas, C.H., Klunk, W.E., Koroshetz, W.J., Manly, J.J., Mayeux, R., et al. (2011). The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7(3), 263–269.

    Article  Google Scholar 

  • Moradi, E., Pepe, A., Gaser, C., Huttunen, H., Tohka, J. (2015). Alzheimer’s Disease Neuroimaging Initiative et al. Machine learning framework for early mri-based alzheimer’s conversion prediction in mci subjects. NeuroImage, 104, 398–412.

    Article  PubMed  Google Scholar 

  • Mount, D.M., & Arya, S. (2010). Ann: A library for approximate nearest neighbor searching. http://www.cs.umd.edu/mount/ANN/. (Accessed: 20 January 2015). version 1.1.2 .

  • Nestor, S.M., Gibson, E., Gao, F.-Q., Kiss, A., Black, S.E. (2013). A direct morphometric comparison of five labeling protocols for multi-atlas driven automatic segmentation of the hippocampus in Alzheimer’s disease. NeuroImage, 66, 50–70.

    Article  PubMed  Google Scholar 

  • Osher, S., Fedkiw, R., Piechor, K. (2004). Level set methods and dynamic implicit surfaces. Applied Mechanics Reviews, 57, B15. https://doi.org/10.1115/1.1760520.

    Article  Google Scholar 

  • Perrotin, A., de Flores, R., Lamberton, F., Poisnel, G., La Joie, R., de la Sayette, V., Mezenge, F., Tomadesso, C., Landeau, B., Desgranges, B., et al. (2015). Hippocampal subfield volumetry and 3D surface mapping in subjective cognitive decline. Journal of Alzheimer’s Disease, 48(s1), S141–S150.

    Article  PubMed  Google Scholar 

  • Platero, C., & Carmen Tobar, M. (2015). A label fusion method using conditional random fields with higher-order potentials Application to hippocampal segmentation. Artificial Intelligence in Medicine, 64(2), 117–129.

    Article  PubMed  Google Scholar 

  • Platero, C., & Carmen Tobar, M. (2016). A fast approach for hippocampal segmentation from t1-MRI for predicting progression in Alzheimer’s disease from elderly controls. Journal of Neuroscience Methods, 270, 61–75.

    Article  PubMed  Google Scholar 

  • Platero, C., & Tobar, M.C. (2017). Combining a patch-based approach with a non-rigid registration-based label fusion method for the hippocampal segmentation in Alzheimer’s Disease. Neuroinfor matics, 15(2), 165–183.

    Article  Google Scholar 

  • Reuter, M., Diana Rosas, H., Fischl, B. (2010). Highly accurate inverse consistent registration: a robust approach. NeuroImage, 53(4), 1181–1196.

    Article  PubMed  Google Scholar 

  • Reuter, M., Schmansky, N.J., Diana Rosas, H., Fischl, B. (2012). Within-subject template estimation for unbiased longitudinal image analysis. NeuroImage, 61(4), 1402–1418.

    Article  PubMed  Google Scholar 

  • Sabuncu, M.R., Bernal-Rusiel, J.L., Reuter, M., Greve, D.N., Fischl, B. (2014). ADNI, et al. Event time analysis of longitudinal neuroimage data. NeuroImage, 97, 9–18.

    Article  PubMed  Google Scholar 

  • Schröder, J., & Pantel, J. (2016). Neuroimaging of hippocampal atrophy in early recognition of Alzheimer´s disease–a critical appraisal after two decades of research. Psychiatry Research: Neuroimaging, 247, 71–78.

    Article  PubMed  Google Scholar 

  • Sled, J.G., Zijdenbos, A.P., Evans, A.C. (1998). A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE transactions on medical imaging, 17(1), 87–97.

    Article  CAS  PubMed  Google Scholar 

  • Song, Z., Tustison, N., Avants, B., Gee, J. (2006). Integrated graph cuts for brain MRI segmentation. Medical Image Computing and Computer-Assisted Intervention–MICCAI, 4191, 831–838.

    Google Scholar 

  • Thompson, W.K., Hallmayer, J., O’Hara, R. (2011). Design considerations for characterizing psychiatric trajectories across the lifespan Application to effects of APOE-ε4 on cerebral cortical thickness in Alzheimer’s disease. American Journal of Psychiatry, 168(9), 894–903.

    Article  PubMed  Google Scholar 

  • van der Lijn, F., den Heijer, T., Breteler, M., Niessen, W.J. (2008). Hippocampus segmentation in MR images using atlas registration, voxel classification, and graph cuts. NeuroImage, 43(4), 708–720.

    Article  PubMed  Google Scholar 

  • Viola, P., & Wells, W.M.III. (1997). Alignment by maximization of mutual information. International Journal of Computer Vision, 24(2), 137–154.

    Article  Google Scholar 

  • Wang, H., Suh, J.W., Das, S.R., Pluta, J.B., Craige, C., Yushkevich, P.A. (2013). Multi-atlas segmentation with joint label fusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(3), 611–623.

    Article  PubMed  Google Scholar 

  • Wang, L., Guo, Y., Cao, X., Wu, G., Shen, D. (2016). Consistent multi-atlas hippocampus segmentation for longitudinal MR brain images with temporal sparse representation. In International workshop on patch-based techniques in medical imaging (pp. 34–42). Springer.

  • Wolz, R., Heckemann, R.A., Aljabar, P., Hajnal, J.V., Hammers, A., Lötjönen, J., Rueckert, D. (2010). Measurement of hippocampal atrophy using 4D graph-cut segmentation: application to ADNI. NeuroImage, 52(1), 109–118.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Data collection for this study was funded by the ADNI (National Institutes of Health Grant U01 AG024904). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering and and through generous contributions from the following: Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; GE Healthcare; Innogenetics, N.V.; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Synarc Inc.; and Takeda Pharmaceutical Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Platero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Platero, C., Lin, L. & Tobar, M.C. Longitudinal Neuroimaging Hippocampal Markers for Diagnosing Alzheimer’s Disease. Neuroinform 17, 43–61 (2019). https://doi.org/10.1007/s12021-018-9380-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-018-9380-2

Keywords

Navigation