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Abstract: Recent advances in brain imaging allow producing large amounts of 3-D volumetric 

data from which morphometry data is reconstructed and measured. Fine detailed structural 

morphometry of individual neurons, including somata, dendrites, axons, and synaptic connectivity 

based on digitally reconstructed neurons, is essential for cataloging neuron types and their 

connectivity. To produce quality morphometry at large scale, it is highly desirable but extremely 

challenging to efficiently handle petabyte-scale high-resolution whole brain imaging database. 

Here, we developed MorphoHub to address this challenge by optimizing both the data and 

workflow management. In particular, this work presents a multi-level method to produce high 

quality somatic, dendritic, axonal, and potential synaptic morphometry. Our method also boosts 

data sharing and remote collaborative validation. We applied MorphoHub to a petabyte application 

dataset involving 62 whole mouse brains, and identified 50,233 somata of individual neurons, 

profiled the dendrites of 11,322 neurons, reconstructed the full 3-D morphology of 1,050 neurons 

including their dendrites and full axons, and detected 1.9 million putative synaptic sites derived 

from axonal boutons. Analysis and simulation of these data indicate the promise of this approach 

for modern large-scale morphology applications. 

 

 

INTRODUCTION 

 

Reconstructing the complete 3-D shape or morphology of a neuron, including its dendrites and 

axons in their entirety, as well as finer structures such as the somata, dendritic spines, and axonal 

terminal boutons, is recognized as a crucial step to profile the myriad types of neurons in brains1–

4. This technique, which we refer to as Multi-Morphometry, has begun to generate intriguing 

information and hypotheses about brain circuits at the single-neuron / single-synapse level5–7. 

 

Mammalian brains, of at least hundreds of cubic millimeters in volume, are very large when sub-

micrometer resolution imaging is used to acquire 3-D volumetric image datasets at the whole-brain 

scale. A fundamental challenge in multi-morphometry is that sub-micrometer resolution is 
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necessary to analyze synaptic patterns in a neuron’s arborization, while whole-brain scale is 

essential to delineate long projecting axonal arbors8. As a result, even for the mouse brain, a widely 

used model system of mammalian brains, a typical 3-D brain-image dataset will have tens of 

teravoxels in volume9,10. On the other hand, neurons have a very complicated tree-like shape, and 

are often labelled and visualized sparsely using chemical11,12, transgenic13 or viral approaches14,15. 

The number of morphologically distinguishable neurons per brain is often limited. Therefore, to 

understand the vast complexity and variation of neurons, it is crucial to obtain a large collection 

of brain image datasets16,17. As each voxel is often stored as one or more bytes, the multi-

morphometry problem arises as a petabyte-computing challenge, and as a paramount task for 

current bioimage informatics applications and technologies18–21. 

 

There is a long history of reconstructing individual neurons’ morphology with image analysis22,23. 

Subneuronal structures including somata, spines and boutons have also been segmented and 

analyzed from images5,24–28. This is a challenge of high community interest. A number of 

algorithms have been examined and compared against each other in public initiatives, e.g. 

DIADEM29 or in the global collaborative BigNeuron initiative30. However, most existing methods 

are applicable only to smaller image datasets and partial neuronal structures. For individual 

mammalian brain datasets, technologies that can handle teravoxels of image volume to trace 

millimeters long neurite fibers emerged only recently, including TeraFly31, UltraTracer32, 

BigDataViewer33, and TeraVR34. Manual and semi-automatic methods were used to trace neurons’ 

full skeletons in Janelia’s MouseLight project2. Yet, it is largely an open problem how to scale up 

all these approaches to handle petabyte-scale multi-morphometry challenge that is becoming a 

compelling reality as whole-brain screening projects involving increasingly larger and more 

complicated animal models are being carried out internationally (BRAIN Initiative 

(https://braininitiative.nih.gov/), Blue Brain Project35, etc.).  

 

 

 

RESULTS 

 

We attempted this petabyte (PB)-scale whole-brain computing challenge by introducing a platform 

called MorphoHub. Our method is centered around reconstructing the multi-level information of 

single neuron’s morphology (Fig. 1a) at the whole-brain scale for a number of brains. MorphoHub 

is able to streamline the workflow of imaging data management, visualization, reconstruction and 

annotation, and data sharing (Fig. 1b). Using MorphoHub, we mass produced multi-morphometry 

data from PB-scale image database (Fig. 1c). Our method allows a smooth transition from manual 

and interactive morphometry acquisition to increasingly routine work done by automatic 

algorithms as we show below. 

 

A key component of MorphoHub is a three-level (L1, L2, and L3) reconstruction approach (Fig. 

1a). We incrementally reconstruct morphological components of neurons, including somata, 

dendrites, axons, spines and boutons, only when such information can be produced faithfully and 

affordably. Specifically, an L1 reconstruction contains the full dendritic arbor and the skeleton of 

all axonal neurite tracts, excluding the fine structures of distal axonal arbors (Fig. 1a and Fig. 2). 

An L2 reconstruction contains the complete structures of all neuronal arbors (Fig. 1a and Fig. 2). 

An L3 reconstruction contains the identification of two key elements of synaptic connectivity, 



 3 

dendritic spines and axonal boutons, as well as other structures of potential interest (e.g., specific 

topology of axonal branching patterns, modeling of specific neuronal compartments’ shape) (Fig. 

1a and Fig. 3).  

 

The proposed multi-level reconstruction method is generic and scalable to single neuron datasets 

of arbitrary size if proper data structure and data workflow are in place. To provide such capability 

for a real PB-scale computing environment, we developed MorphoHub to manage all data flow 

and processing procedures in an integrated way (Fig. 1b and Supplementary Fig. 1, Methods). 

MorphoHub handles four heterogeneous data types, including image volumes, neuron morphology, 

meta-data of user interactions, and data management (conversion, storage, transferring/sharing) 

schemas, for a PB-scale database. We also engineered a universal application interface (Fig. 1b 

and Supplementary Fig. 2) in MorphoHub so that it could invoke additional image analysis and 

validation tools when needed.  

 

To demonstrate the capability of this approach, we built an image database called D62 consisting 

of 62 whole mouse brain images. D62 has in total 713.35 teravoxels, 1.43 petabytes in native image 

space, and 973 terabytes in compressed file space (Supplementary Data 1). MorphoHub ran 

smoothly on D62 and allowed us to precisely pinpoint somata of 50,233 neurons using TeraFly 

(100% accuracy validated by independent annotators). For each neuron, we then reconstructed the 

dendrites automatically (Fig. 3a, Methods), followed by feature-based screening and visual 

validation (Fig. 1c, Methods). Using this workflow, we produced traceable dendritic results of 

11,322 neurons. Due to the scale of the problem, similar results were hard to obtain using other 

software. 

 

For each of the sparsely labeled neurons whose long axon projection could be separated, we first 

produced an L1-reconstruction corresponding to the key skeleton of a neuron along with its 

dendrites and axonal projection targets. We then requested human annotators to validate each L1-

reconstruction. The resulting L1-reconstruction was then further refined to complete the L2-

reconstruction that also added the distal axonal arbors projecting far away across various brain 

regions. In this study, we focused on reconstructing the full morphology of 1,050 neurons whose 

somata situate in the thalamus, striatum, and cortical regions of mouse brains (Methods). Each 

L1-L2 pair of the completed neuron reconstructions were validated by at least two annotators. This 

dataset, called R1050, was used to further examine whether or not the core multi-level 

reconstruction method would make sense. 

 

We compared the L1 and L2 morphology in R1050. On average a pair of L1-L2 reconstructions 

have five to six fold difference in terms of their length and number of branches (Fig. 2a and Fig. 

2b). However, a Sholl analysis36 indicates that the L1-L2 pairs share branching patterns in 

dendrites and differ only in the additional axonal regions of L2 (Supplementary Fig. 3). 

Additionally, 95% of the corresponding L1 and L2 reconstruction-pairs have at least 75% overlap 

in their projecting target brain-regions (Fig. 2c). Finally, we used random-sampling to simulate 

the potential reconstruction error that would be seen if the L1-L2 leveled protocol were not used 

(Methods). The L1-L2 reconstruction protocol can avoid reconstruction error of a brute-force 

approach that would reconstruct distal arbors directly without first validating the L1-reconstruction 

(Fig. 2d). In summary, Fig. 2 shows that reconstructing L1 first without incurring the great 

complexity in producing the L2 data already offers an efficient way to analyze the key branching 
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structures and the ballpark projection pattern of single neurons. The reconstructions in each level 

state are transmitted and stored efficiently and safely by MorphoHub. 
 

On the other hand, the rich detail in the axonal arbors of the L2 reconstruction of a neuron as 

demonstrated in Fig. 2 also serves as the basis of finer-resolution morphometry. For axonal arbors 

in R1050, we further generated the L3 morphometry by detecting putative synaptic sites (boutons) 

of neurons at very large scale (Methods). Due to the presence of axonal fibers, we are able reduce 

the conventionally required 3-D blob-segmentation problem for bouton detection to a much 

simpler 1-D Gaussian model fitting problem, that can be solved in both high accuracy and high 

speed. We fit a Gaussian kernel to the axonal varicosities and detected 1.9 million boutons (Fig. 

3b-d). Random inspection of the results indicated that the detection precision was above 95% 

(Supplementary Fig. 4). We also found that nearly 80% of the average spacing of adjacent 

boutons along an axon ranged from 5 to 20 um (Fig. 3c). The L1-L2-L3 trio morphometry 

produced using this method allows studying the complete distribution of single neurons, their 

projection, and potential connectivity patterns at whole brain scale. A detailed analysis of the 

patterns in and statistics of these datasets will be reported elsewhere. 

 

All multi-morphometry data produced by MorphoHub were also registered to the Allen Common 

Coordinate Framework (CCF)37 to see how the distributions of each data level correlate with others 

(Fig. 4). In this way, various brain regions (the white colored regions), dendrites, axons, and 

boutons can all be identified (Fig. 4a-e). As a result, MorphoHub can output a summary matrix 

with rows representing neurons, columns representing a unique CCF parcel, and numerical entries 

expressing, for each neuron and corresponding parcel, the axonal and dendritic length, the number 

of boutons, and the (binary) presence of soma. Such representation lends itself to highly 

informative quantitative analyses, such as pairwise probability of directional connection between 

neurons (dot product of presynaptic axonal values and postsynaptic dendritic values) and 

projection similarity (arccosine distance between axonal values of two neurons). Fig. 4 shows that 

the distributions of these neuronal entities do not correlate globally. Instead, they exhibit regional 

enrichment of which the pattern is hard to observe when only local brain areas are analyzed. 

 

For PB-scale computing, the speed of data I/O for storage and data sharing across networks 

(Internet or intranets) becomes more critical than in applications at small scale. It is essential to 

reduce data volume without compromising visualization and analysis of such large data. We 

observed that an L1-L2-L3 morphology trio of a neuron will always be sparse and that the spine 

and bouton information in the L3 data could be described using a neighborhood around the neuron 

skeleton in preceding levels. To utilize this observation, we developed a compact L0 representation 

of a neuron for effective imaging data management, sharing, and computation (Fig. 5a, Methods). 

The key idea is that the L0 data of a neuron represents a tightly bounded image region that covers 

the L1-L2-L3 trio area. Because dendritic spines typically attach dendritic fiber orthogonally, and 

axonal boutons scatter along axons, for any given L2 (or L1) skeleton we conveniently extracted 

a series of piecewise 512x512x512-voxel 3-D image-tiles around the skeleton to cover all spines 

and boutons and at the same time to allow fast image file I/O. In this way, an L0 representation 

identifies an image sub-region that contains all parts of a specific neuron.  

 

For R1050 reconstructed from D62, on average the L0 data generated based on an L1 skeleton 

contains more than 77% of that generated based on the corresponding L2 reconstruction (Fig. 5b). 

In addition, the L0 data of a neuron typically occupies three orders of magnitude less image volume 
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compared to the whole brain image (Fig. 5c). The L0 data of the largest neuron in this work has 

~80 gigavoxels, while the mean value and standard deviation of the volume of L0 data of 1,050 

fully reconstructed neurons are 6.75 and 5.94 gigavoxels, respectively (Fig. 5d, Supplementary 

Table 1). Practically, even the union of all L0 data of neurons, denoted as Super L0, in a sparsely 

labeled brain still has 1 to 3 orders of magnitude fewer voxels compared to the total volume of the 

brain (Fig. 5c). In this way, the multi-morphometry framework allows thousands of fold better 

efficiency in both storing and transferring the essential image data and quantitative shape 

information of neurons. This utility greatly simplifies the previously challenging data sharing task. 

Indeed, without accelerated content delivery, currently it is possible to transfer the L0 data in 

R1050 between the data production center (SEU-ALLEN) in Asia and one data releasing facility 

(BICCN Image Library, Pittsburgh supercomputing center) in North America (Fig. 5d). This direct 

data sharing replaced a previous way to bulk ship hard drives containing the massive amount data 

back-and-forth across continents. 

 

With the L0-L1-L2-L3 quadruple data, we further enhanced the scale and faithfulness of our multi-

morphometry produced in two ways. First, since the L0 data has a much smaller volume and thus 

is much easier to share across network, in MorphoHub we developed a collaborative mode that 

interconnects a number of formerly autonomous TeraFly/TeraVR users to synergistically work on 

the L0 data directly (Supplementary Fig. 5). This method parallelizes the workflow and thus 

improves the data production rate. The cooperative work of multiple annotators also elevates the 

faithfulness of the resultant morphometry. Second, we used a deep learning network to learn from 

the L0-Lx (x = 1,2,3) pair. The trained model was used to detect specific neuronal features, such 

as neurite skeleton or axonal terminals (Supplementary Fig. 6). This process can be repeatedly 

optimized based on progressively more and more accurate L0-L1-L2-L3 quadruple data. Such 

automation also increases the data production rate for PB-scale computing.  

 

 

DISCUSSION 

 

In this study, we demonstrated that MorphoHub is a robust PB-scale informatics platform to 

generate large-scale single neuron reconstructions suitable for multi-scale biological analysis.  

MorphoHub has several advantages: (1) efficient multi-level production and management of 

whole-brain neuron reconstructions; (2) conducting morphological analysis and cell typing 

globally and at multi-resolution; (3) enabling the investigation of the convergence or divergence 

of neuronal projections by analyzing distribution of neuronal arbors across brain regions; (4) 

comparison of various neuronal elements and sub-structures with respect to the types of cells. 

Taken altogether, our whole-brain multi-morphometry approach provides a framework to produce 

hierarchical datasets that synchronize brain anatomy, single neuron morphology, sub-neuronal 

structures, and potential pre-synaptic sites, all mapped onto a standardized atlas.  Our method will 

be useful for further studies of neuronal circuits based on whole-brain imaging, not only for mouse 

brains but also for other model systems such as monkey brains. 

 

Our work furthers previous effort to use light microscopy (LM) to visualize and detect synapses 

around neurite tracts labeled by genetic markers5,6 or antibodies17, which were limited to partial 

neuronal structures in local brain regions. In this study we used fMOST data as a showcase of 

MorphoHub and for putative synaptic sites we have focused on axonal boutons. As a generic 
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computational framework, MorphoHub is applicable to various datasets produced with different 

methods and collected with different imaging modalities.  

 

Of note, MorphoHub stores both the original neuronal tracing in the native coordinates of the 

individual brain specimen, allowing efficient extraction of precise geometric measurements (e.g., 

synaptic distance from the soma along the axonal path) as well as a registered version of the same 

morphology mapped to CCF. The registration of the axonal reconstructions is efficiently expressed 

by augmenting each tracing coordinate, from the center of the soma all the way to the boutons, 

with the unique identifier of the anatomical parcel in which it is embedded38. On the one hand, 

such compact representation immediately enables real-time computation of potential circuit 

connectivity39. On the other, it provides critical information regarding neuronal identity by 

encoding its somatic region and quantitative projection targets. This information, together with the 

specification of essential details regarding the brain specimen and imaging modality, fulfills the 

recommended requirements for standard metadata description of neuromorphological 

reconstructions40. Thus, the MorphoHub IT infrastructure is seamlessly compliant for effective 

pipelining with the NeuroMorpho.Org public data sharing platform, ensuring maximum impact 

through expanded community outreach41.  

 

Another line of major current effort is to reconstruct dense neurite tracts and synapses, or 

“connectomes”, using electron microscopy (EM) followed by computationally intensive 3D image 

segmentation and modeling, such as the MICRON project42 and the Janelia FlyEM project43. For 

mammalian brains, EM-based approaches are still restricted to local brain regions due to their very 

high resolution and various challenges in sample preparation and imaging. Our method 

complements the EM-based approach in whole brain scale profiling. Importantly, the lower cost 

of LM enables one to integrate morphometry information from many brains that is crucial to 

understand the variability of neurons and their circuits across brains and conditions. In comparison 

with EM-based reconstruction of individual neurons, MorphoHub reconstructs the whole 

morphology, including (1) soma locations; (2) dendritic arbors, which entails the capacity for and 

locations of synaptic inputs; (3) axonal trajectories with collateral projections and terminal boutons, 

which indicate innervation of projection targets. Together, such information is directly relevant to 

neuronal function.  

 

The MorphoHub system and the multi-level reconstruction approach are being enhanced in various 

ways. In addition to various workstation/PC clients, virtual reality consoles, super-computing, and 

big-display walls that are already integrated in MorphoHub, mobile applications (APPs) for more 

intelligent and automated neuron tracing are being developed and added onto MorphoHub. We are 

also deploying MorphoHub for data servers in the cloud and scaling up the capability for 

concurrent data serving of distributed users. We hope these engineering efforts would lead to a 

new globally accessible platform that has potential to bring the current productivity to the next 

level, especially addressing challenges in completing neuron morphometry more efficiently, 

producing more fine-scale morphometry such as synapses with their shapes and statistics, 

integrating more automation through the use of AI, sharing of imaging data remotely at affordable 

cost, and international collaboration of neuroanatomists and other interested users. 

 

 

CONCLUSION 
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Neuronal morphology is an essential component of cell type identity in the brain and an essential 

determinant of connectivity and circuit function. Large scale accurate neuronal profiling 

necessitates advanced methods in computational processing to effectively manage storage and 

bandwidth for collaborative segmentation and annotation. The data in this study shows our 

petabyte-scale computing framework is able to provide a solution to modern anatomic workflow 

requirements that are now demanded for very large-scale morphometry.  

 

 

 

DATA AND CODE AVAILABILITY 

 

The whole brain image datasets are released under BICCN’s Brain Image Library (BIL) at 

Pittsburgh Supercomputing Center. The multi-morphometry datasets can be downloaded at 

GitHub https://github.com/Vaa3D/Vaa3D_Data/releases/M2_v2.1. The software is available upon 

request. 
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METHODS 

 

MorphoHub platform 

As an integrated platform for PB-scale multi-morphometry production at whole brain scale, 

MorphoHub handles heterogeneous data such as image volumes, neuron morphology, metadata of 

user interactions, and data management schemas (Supplementary Fig. 1). From a system 

architecture point of view, MorphoHub is comprised of the hardware layer, the software layer, the 

service layer, and the audit layer. For the hardware layer, several major parts are included. The 

VR-equipped annotation workstations are used for data visualization, interactive neuron 

reconstruction, proofreading, etc. A Petabyte-scale storage is configured to store the whole-brain 

imaging datasets, while the multi-morphometry data is managed using cloud-based storage. A 

computing cluster is deployed for parallel execution of batch work assignments. Moreover, a wall-

mounted display array is also available for monitoring the data generation status. The storage 

server and the computing cluster are connected with a 100 Gbps wired local area network for peta-

scale data storage and parallel computing. The annotation workstations, cloud storage, and monitor 

system reside in a 10 Gbps local area network. For the software layer, Vaa3D44,45 (including 

TeraFly and TeraVR) serves as the underlying platform for imaging data management, 

visualization and annotation. Besides, in MorphoHub a database management system, which is 

developed based on Vaa3D plugins, is designed to manage all the multi-morphometry data 

generation. Most major functions of MorphoHub are fulfilled in the service layer, including data 

conversion, reconstruction, backup and recovery, analysis, and visualization. Also, MorphoHub 

has an audit layer that is responsible for data permission management, activity logging, and 

monitoring of overall progress. Moreover, MorphoHub provides a user-friendly graphical interface 

for intuitive user interaction. MorphoHub is cross-platform and can be deployed on Linux and 

Windows. 

 

Generation of somata and dendritic arbors 

The annotators browsed each whole brain image in D62 using TeraFly and pinpointed soma 

locations. 2-D maximum intensity projection (MIP) images were generated for each soma-centered 

region for further validation. Then, centering at each identified soma, a local image volume of 

1024x1024x512 was cropped from the from highest resolution of whole brain image. Next, the 

APP246 algorithm was invoked for the tracing of dendritic arbors. In particular, a number of 

background thresholds (15, 20, …, 40) were adopted for each tracing routine. The tasks were 

submitted to the cluster server for parallel computation. The results were retrieved and stored only 

if the execution time was under 30 seconds. Then, we leveraged the gold-standard datasets, e.g., a 

set of manually annotated and validated dendritic arbors, to form rules for further screening the 

automatic reconstruction results. The [min, max] interval of the following five features of the 

dendritic arbors were considered, including 'Tips', 'Length', 'Max Path Distance', 'Average 

Bifurcation Angle Remote', and 'Max Branch Order'. An automatic tracing result qualified if more 

than four features conformed with the gold-standard. In case more than one tracing qualified for a 

certain soma location, the result with larger overall tracing length was selected. In visual screening, 

tracing results were removed when multiple cells were connected.  

 

Generation of L1 and L2 data 
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In MorphoHub, we use a multi-level approach to reconstruct neuron morphology: the L1 

reconstruction contains the dendritic trees and the long axonal projections, while the structures of 

distal axonal arbors are annotated in the L2 reconstruction. The generation of either L1 or L2 data 

requires several rounds of checking and correction and is essentially an iterative procedure. In each 

iteration, there is a generation step (GS) and a validation step (VS) (Supplementary Fig. 7). In 

the generation step, an annotator tries to reconstruct the neuron’s morphology until the person 

considers that the reconstruction meets the standard of the current level, i.e., L1 or L2. Then, in 

the validation step, a second annotator examines the reconstruction while labeling the over-traced 

structures (false positive, FP) and missing structures (false negative, FN) and confirming the 

correct structures (true positive, TP). After that, the precision rate (P= TP/ (TP+ FP)) and recall 

rate (R= TP/ (TP + FN)) can be calculated. If the F1 score = (2*RP/ (R+P)) is greater than the 

preset threshold, the current level is considered finalized. Otherwise, another iteration is needed. 

Normally, the reconstructions of both L1 and L2 converge in two iterations. 

 

Calculation of the overall reconstruction accuracy in random-sampling simulation 

The reconstruction of a neuron’s morphology, normally starting from the soma and gradually 

extending all the way to the remote terminals, is essentially a consecutive decision-making process. 

Thus, it is likely to suffer from the problem of error propagation, i.e., the reconstruction errors at 

upstream structures will affect the downstream structures. We assume that for each primitive 

structure in neuron reconstruction, e.g., a neuronal segment, there is a constant probability p for 

error occurrence. Besides, if error occurs at some structure, it will also propagate to all its child 

structures. During the validation step, reconstruction errors could be identified and corrected. 

However, new errors would still be likely to be introduced at the given chance. Based on such 

assumptions, we could calculate the overall reconstruction accuracy after n rounds of iterations. 

With the L1-L2 leveled protocol, we assign n/2 iterations for L1 reconstructions, and other n/2 

iterations for L2. With the one-level strategy, we simply repeat the generation-validation steps n 

times for the reconstruction of whole neuron. The simulation can be carried out several times to 

achieve stable results. 

 

L3 (bouton) generation 

As a typical L3 data, the bouton distributions are generated based on the guidance of L2 axonal 

arbors. Boutons are mainly located at distal axonal arbors rather than the long axonal projections. 

We used a four-step approach to extract L3 (bouton) data automatically. Firstly, the neuronal tree 

representation of L2 data is resampled using a fixed-length interval. In this work, the interval is 

set to be 4 microns. Secondly, for each node in the neuronal tree, the corresponding image intensity 

value is retrieved from the whole brain datasets. Since the nodes cannot be guaranteed to locate at 

the centers of the putative boutons, the nodes are allowed to be locally shifted to the maximum 

intensity position within a small area (e.g., 2 voxels). We assume that the intensity of imaging 

signal along axons obeys the 1-D Gaussian distribution and a bouton site tends to have intensity 

jump compared with its neighboring nodes. Thus, the third step is to calculate the intensity jump 

threshold for each small image block (e.g., 128x128x123) as the standard deviation of the block, 

and extract bouton candidate in a block-wise manner. Finally, in the last step, we remove any 

possibly duplicated bouton site if it is too close to its neighboring site (e.g., within 5 voxels). 

 

Generation of the L0 imaging data 



 13 

The L0 imaging data is generated based on the corresponding morphometry data, e.g., L1 data, L2 

data, or even a dendritic arbor. The L0 data contains the image regions that cover all the anatomical 

structures of the morphometry and is organized in a TeraFly-compatible hierarchical form, just as 

the whole-brain imaging data. The approach to generate L0 data is described below. For a given 

neuron, each fundamental morphological element, i.e., nodes and edges, is examined. The local 

image block in the whole-brain dataset that contains the element is found and marked as “relevant”. 

Then, all the “relevant” images are combined into the union set from which the compact L0 data 

are finally generated by building a multi-resolution image hierarchy. 

 

Quality control workflow and public release 

The reconstructions are concurred to be released after following the single-tree criterion, which 

includes correct types, no loops, and no trifurcation or multi-furcation. Combination of manual 

modifications and automatic algorithms were used to control the quality of reconstructions. 

Automatic routines were invoked to detect any presence of gaps, loop and multi-furcation, 

followed by manual correction of such issues. Other procedures include examining the 

reconstruction quality at branch terminals and checking whether all the neurites are centered at 

image signals. After 2 to 3 rounds of checking, the reconstructions are then ready for ingestion and 

mirroring in open-source repositories such as NeuroMorpho.Org (http://neuromorpho.org/). 
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FIGURES 

 
Fig 1. Multi-morphometry data generation from whole-brain imaging datasets. a An illustration 

of the multi-level reconstruction approach. From a whole-brain image containing trillions of 

voxels (top left), the Level-1 (L1), Level-2 (L2), and Level-3 (L3) data are reconstructed in 

sequence (bottom). Moreover, a concise Level-0 (L0) imaging data is also generated based on the 

reconstructed morphometry (top right). b The MorphoHub system for the generation of multi-

morphometry data, management and visualization of all related data and workflow, data sharing 

and extended functions. c Examples of the multi-morphometry data reconstructed from one Brain 

(Brain id: 18454). From top to bottom are the somata, dendrites, L1, L2, and L3 data, respectively, 

with zoom-in panels for red arrows shown on the right. 
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Fig 2. Comparisons of L1 and L2 data. a and b Two features (a: total length; b: branch number) 

of L1 and L2 data. Neurons are from three brain regions (TH (Thalamus): 705 neurons; CTX 

(Cortex): 23 neurons; STR (Striatum): 322 neurons). c Comparison of the projection targets of the 

L1-L2 pairs. Horizontal axis: number of neurons. Vertical axis: overlapping ratios of projection 

targets of L1-L2 pairs. d Random-sampling simulation of potential reconstruction errors of the 

L1-L2 leveled protocol and the brute-force one-level strategy. Horizontal axis: the assumed error 

rate for each primitive structure (e.g., a tract). Vertical axis: overall accuracy of the 

reconstructions after validation. Error bar: SD. 
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Fig 3. Mass data production of somata, dendrites, and boutons. a Number of identified somata 

and automatically reconstructed dendritic arbors from D62. b Number of detected boutons based 

on the L2 morphometry in R1050. c Distribution of the linear density of boutons along the axonal 

skeletons. Red bar highlights the range [0.05, 0.2]. d Examples of detected boutons. Upper: a local 

image region containing an axonal cluster. Bottom: putative boutons shown in distinct colors.  
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Fig 4. Visualization of the multi-morphometry data in R1050. a The color-coded joint distribution 

of dendrites, axons, and boutons. From top to bottom: horizontal view (slice no. 165), coronal 

view (slice no. 335), and sagittal view (slice no. 148). Colors indicate the densities of dendrites, 

axons, and boutons normalized to the standard RGB color space. Scale bar: 2mm. b Individual 

distributions of somata in R1050. Each inset corresponds to the combination of 25 consecutive 

coronal slices, in which the brain regions were colored according to the densities of somata. The 

darker the color, the higher the density. c-e Similar visualizations for dendrites, axons, and 

boutons in R1050, respectively. 



 18 

 

 
Fig 5. The L0 representation of imaging data. a The L0 image (shown in horizontal, coronal, and 

sagittal views) for neuron 17782_00004, overlaid with its L2 reconstruction. b For neurons in 

R1050, the ratio of L0 image volume generated from L1 data over that generated from L2 data. c 

Comparisons of the size of whole-brain images, the average size of L0 data, and the size of the 

“super L0-data” (union of all L0 data of neurons). Error bar: SD. d Time for transferring 1050 

L0 images between two research centers in Asia (SEU-ALLEN) and America (BIL).  
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SUPPLEMENTARY TABLES 

 

Supplementary Table 1. The statistics of L1 and L2 reconstructions. 
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SUPPLEMENTARY FIGURES  

 
Supplementary Figure 1. The architecture of MorphoHub. MorphoHub has four layers: hardware, 

software, service, and audit layer. On top there is also a graphical user interface for convenient 

user interaction. 

 

 

 

 

 

 

 
Supplementary Figure 2. Extended functions via the universal application interface of MorphoHub. 

a Version control tool for comparing the structural difference of two reconstruction versions. 

(white: identical structures, green: different structures). b Sholl analysis for neurons of the same 

cell type. c Monitoring of the morphometry data production. The numbers of generated neurons 

are shown for each brain and each release date. 
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Supplementary Figure 3. Comparison between the L1-L2 data pairs. a Left: a neuron 

(18465_00001) with one axonal cluster. Neurites in black are the common parts for both L1 and 

L2; neurites in red belong to L2 only. Right: Sholl analysis of the L1 and L2 data. b A neuron 

(18462_00030) with two axonal clusters. 
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Supplementary Figure 4. Validation of the bouton detection method. a A local image volume (id 

7) containing axonal boutons. b The automatically detected boutons. The detected boutons were 

compared with manual annotations and were marked by blue (true positive), yellow (false positive), 

or red (false negative) spheres. The size of the spheres indicates the level of confidence for 

detection. c Close-up views of the detected terminal-boutons (first column) and intermediate-

boutons (second column). The cropped images were centered at the boutons.  d A list of validation 

results involving 15 image blocks and 2,812 detected boutons. 
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Supplementary Figure 5. Collaborative neuron reconstruction among several TeraFly/TeraVR 

clients. a-d. L2 neurons that are reconstructed and proofread by a group of annotators. The 

portion reconstructed by each annotator is represented by a different color. The pie chart 

corresponds to the reconstruction length of distinct annotators.  
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Supplementary Figure 6. 3D-CNN based tip detection. MorphoHub is compatible for integrating 

various AI components to assist with data production, proofreading and analysis. For example, 

DeepTip is a deep learning-based component that is integrated in MorphoHub for differentiating 

true terminal tips of neurites and even automatically correcting the false ones. 
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Supplementary Figure 7. The generation of L1/L2 data. Each box stands for an iteration and 

contains a generation step and a validation step. Various colors are used for distinguishing the 

changed structures in each iteration (blue: dendrites; red: axons; cyan: increased structures from 

previous step; green: under-traced structures; black: over-traced structures). 
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Multi-morphometry data generation from whole-brain imaging datasets. a An illustration of the multi-level
reconstruction approach. From a whole-brain image containing trillions of voxels (top left), the Level-1
(L1), Level-2 (L2), and Level-3 (L3) data are reconstructed in sequence (bottom). Moreover, a concise
Level-0 (L0) imaging data is also generated based on the reconstructed morphometry (top right). b The
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Figure 2

Comparisons of L1 and L2 data. a and b Two features (a: total length; b: branch number) of L1 and L2
data. Neurons are from three brain regions (TH (Thalamus): 705 neurons; CTX (Cortex): 23 neurons; STR
(Striatum): 322 neurons). c Comparison of the projection targets of the L1-L2 pairs. Horizontal axis:
number of neurons. Vertical axis: overlapping ratios of projection targets of L1-L2 pairs. d Random-
sampling simulation of potential reconstruction errors of the L1-L2 leveled protocol and the brute-force
one-level strategy. Horizontal axis: the assumed error rate for each primitive structure (e.g., a tract).
Vertical axis: overall accuracy of the reconstructions after validation. Error bar: SD.



Figure 3

Mass data production of somata, dendrites, and boutons. a Number of identi�ed somata and
automatically reconstructed dendritic arbors from D62. b Number of detected boutons based on the L2
morphometry in R1050. c Distribution of the linear density of boutons along the axonal skeletons. Red
bar highlights the range [0.05, 0.2]. d Examples of detected boutons. Upper: a local image region
containing an axonal cluster. Bottom: putative boutons shown in distinct colors.



Figure 4

Visualization of the multi-morphometry data in R1050. a The color-coded joint distribution of dendrites,
axons, and boutons. From top to bottom: horizontal view (slice no. 165), coronal view (slice no. 335), and
sagittal view (slice no. 148). Colors indicate the densities of dendrites, axons, and boutons normalized to
the standard RGB color space. Scale bar: 2mm. b Individual distributions of somata in R1050. Each inset
corresponds to the combination of 25 consecutive coronal slices, in which the brain regions were colored
according to the densities of somata. The darker the color, the higher the density. c-e Similar
visualizations for dendrites, axons, and boutons in R1050, respectively.



Figure 5

The L0 representation of imaging data. a The L0 image (shown in horizontal, coronal, and sagittal views)
for neuron 17782_00004, overlaid with its L2 reconstruction. b For neurons in R1050, the ratio of L0
image volume generated from L1 data over that generated from L2 data. c Comparisons of the size of
whole-brain images, the average size of L0 data, and the size of the “super L0-data” (union of all L0 data
of neurons). Error bar: SD. d Time for transferring 1050 L0 images between two research centers in Asia
(SEU-ALLEN) and America (BIL).
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