Skip to main content
Log in

Spatial and temporal stochastic interaction in neuronal assemblies

  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Summary

The observation of various types of spatio-temporal correlations in spike-patterns of multiple cortical neurons has shifted attention from rate coding paradigms to computational processes based on the precise timing of spikes in neuronal ensembles. In the present work we develop the notion of “spatial” and “temporal interaction” which provides measures for statistical dependences in coupled stochastic processes like multiple unit spike trains. We show that the classical Willshaw network and Abeles’ synfire chain model both reveal a moderate spatial interaction, but only the synfire chain model reveals a positive temporal interaction, too. Systems that maximize temporal interaction are shown to be almost deterministic globally, but posses almost unpredictable firing behavior on the single unit level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abeles, M. (1991) Corticonics: Neural circuits of the cerebral cortex. Cambridge University Press, Cambridge UK.

    Google Scholar 

  • Aertsen, A. M. H. J.; Gerstein, G. L.; Habib, M. K. and Palm, G. (1989) Dynamics of Neuronal Firing Correlation: Modulation of “Effective Connectivity”. J. Neurophysiol. 61: 900–917.

    PubMed  CAS  Google Scholar 

  • Amari, S.-I. (2001) Information Geometry on Hierarchy of Probability Distributions. IEEE Trans. Information Theory 47: 1701–1711.

    Article  Google Scholar 

  • Amit, D. J. (1995) The Hebbian Paradigm Reintegrated: Local Reverberations as Internal Representations. Beh. Brain Sci. 18: 617–657.

    Article  Google Scholar 

  • Ay, N. (2002a) An Information-Geometric Approach to a Theory of Pragmatic Structuring. Annals of Probability 30: 416–436.

    Article  Google Scholar 

  • Ay, N. (2002b) Locality of Global Stochastic Interaction in Directed Acyclic Networks. Neural Comput. 14: 2959–2980.

    Article  PubMed  Google Scholar 

  • Ay, N. (2003) Information Geometry on Complexity and Stochastic Interaction. IEEE Trans. Information Theory, submitted.

  • Ay, N.; Wennekers, T. (2003) Dynamical Properties of Strongly Interacting Markov Chains. Neural Networks, submitted.

  • Bliss, T. V. P. and Collingridge, G. L. (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361: 31–39.

    Article  PubMed  CAS  Google Scholar 

  • Cover, T. M. and Thomas, J. A. (1991) Elements of Information Theory. Wiley Series in Telecommunications. New York: Wiley-Interscience.

    Google Scholar 

  • Dayan, P. and Abbott, L. F. (2001) Theoretical Neuroscience. MIT-Press, Cambridge, MA.

    Google Scholar 

  • Eckhorn, R. (1999) Neural mechanisms of scene segmentation: Recordings from the visual cortex suggest basic circuits for linking field models. IEEE Trans. Neural Networks 10: 464–479.

    Article  CAS  Google Scholar 

  • Fuster, J. M. (1994) Memory in the cerebral cortex. MIT Press, Cambridge.

    Google Scholar 

  • Grün, S.; Diesmann, M. and Aertsen, A. (2002) Unitary events in multiple single-neuron spiking activity: I. Detection and significance. Neural Comput. 14: 43–80. II. Nonstationary data. Neural Comput. 14: 81–119.

    Article  PubMed  Google Scholar 

  • Hebb, D. O. (1949) The organization of behavior. Wiley, New York.

    Google Scholar 

  • Linsker, R. (1988) Self-organization in a perceptual network. IEEE Computer 21, 105–117.

    Google Scholar 

  • Martignon, L.; von Hasseln, H.; Grün, S.; Aertsen, A. and Palm, G. (1995) Detecting higher-order interactions among the spiking events in a group of neurons. Biol. Cybern. 73: 69–81.

    PubMed  CAS  Google Scholar 

  • Nakahara, H. and Amari, S. (2002) Information geometric measure for neural spike trains. Neural Comput. 14: 2269–2316.

    Article  PubMed  Google Scholar 

  • Nicolelis, M. A. L., and De Schutter, E. (2001) Special Issue on Multiple Electrode Recordings. J. Neurosci. Meth. 94(1): 3–154.

    Google Scholar 

  • Palm, G. (1982) Neural Assemblies. An Alternative Approach to Artificial Intelligence, Springer Verlag, Berlin.

    Google Scholar 

  • Rieke, F., Warland, D., Ruyter van Steveninck, R. and Bialek W. (1998) Spikes: Exploring the Neural Code. MIT Press, Cambridge.

    Google Scholar 

  • Singer, W. and Gray, C. M. (1995) Visual feature integration and the temporal correlation hypotheses. Ann. Rev. Neurosci. 18: 555–586.

    Article  PubMed  CAS  Google Scholar 

  • Tononi, G.; Sporns, O. and Edelman, G. M. (1994) A measure for brain complexity: Relating functional segregation and integration in the nervous system. Proc. Natl. Acad. Sci. 91: 5033–5037.

    Article  PubMed  CAS  Google Scholar 

  • Wennekers, T. and Ay, N. (2002) Temporal Infomax on Markov Chains with Input Leads to Finite State Automata. Neurocomputing, in press.

  • Willshaw, D. J.; Buneman, O. P. and Longuet-Higgins, H. C. (1969) Non-holographic associative memory. Nature 222: 960–962.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Wennekers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wennekers, T., Ay, N. Spatial and temporal stochastic interaction in neuronal assemblies. Theory Biosci. 122, 5–18 (2003). https://doi.org/10.1007/s12064-003-0034-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-003-0034-y

Key words

Navigation