Skip to main content
Log in

Self-replication: spelling it out in a chemical background

  • Original Paper
  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Abstract

Self-replication, an important concept abstracted from reproduction, the key feature of life, remains vague in definition and lacking in clear interpretation in terms of its chemical mechanism. Mentioned frequently in discussions concerning the essence of life and its origin, the vague concept has caused a lot of uncertain statements, confusable references, and malposed debates, and has seriously held back efforts in this field. In this article, we try to improve the situation by a conceptual analysis in a more fundamental and clearer background. Self-replication in the substantial world could not mean anything but that “an entity favors the production of its own.” The major chemical mechanism for such favoring is catalysis, which can be classified into speed- and direction-favoring types (the template-directing function is actually a type of direction-favoring catalysis). Molecular self-replication could be based on autocatalysis or self-metabolism; the self-replication of a complex entity could be based on autocatalytic and/or self-metabolic sets, and should involve a mechanism of self-division. This conceptual clarification sheds light on the dim areas concerning the essence of life and its origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anet FA (2004) The place of metabolism in the origin of life. Curr Opin Chem Biol 8:654–659

    Article  PubMed  CAS  Google Scholar 

  • Bachmann PA, Luisi PL, Lang J (1992) Autocatalytic self-replicating micelles as models for prebiotic structures. Nature 357:57–59

    Article  CAS  Google Scholar 

  • Bag BG, Von Kiedrowski G (1996) Templates, autocatalysis and molecular replication. Pure Appl Chem 68:2145–2152

    Article  CAS  Google Scholar 

  • Bartel DP (1999) Re-creating an RNA replicase. In: Gesteland RF, Cech TR, Atkins JF (eds) The RNA world. Cold Spring Harbor Laboratory Press, New York, pp 143–162

    Google Scholar 

  • Blackmond DG (2004) Asymmetric autocatalysis and its implications for the origin of homochirality. Proc Natl Acad Sci USA 101:5732–5736

    Article  PubMed  CAS  Google Scholar 

  • Bolm C, Gladysz JA (2003) Introduction: enantioselective catalysis. Chem Rev 103:2761–2762

    Article  CAS  Google Scholar 

  • Burmeister J (1998) Self-replication and autocatalysis. In: Brack A (ed) The molecular origins of life: assembling pieces of the puzzle. Cambridge University Press, Cambridge, pp 295–311

    Google Scholar 

  • Cech TR (1989) RNA chemistry—ribozyme self-replication. Nature 339:507–508

    Article  PubMed  CAS  Google Scholar 

  • Coontz R, Fahrenkamp-Uppenbrink J, Szuromi P (2003) Speeding chemistry along—introduction. Science 299:1683–1706

    Article  CAS  Google Scholar 

  • Cousins GRL, Poulsen SA, Sanders JKM (2000) Molecular evolution: dynamic combinatorial libraries, autocatalytic networks and the quest for molecular function. Curr Opin Chem Biol 4:270–279

    Article  PubMed  CAS  Google Scholar 

  • Eigen M, Schuster P (1979) The hypercycle: a principle of natural self-organization. Springer, Berlin

    Google Scholar 

  • Green R, Szostak JW (1992) Selection of a ribozyme that functions as a superior template in a self-copying reaction. Science 258:1910–1915

    Article  PubMed  CAS  Google Scholar 

  • Hanczyc MM, Fujikawa SM, Szostak JW (2003) Experimental models of primitive cellular compartments: encapsulation, growth, and division. Science 302:618–622

    Article  PubMed  CAS  Google Scholar 

  • Inoue T, Orgel LE (1983) A non-enzymatic RNA-polymerase model. Science 219:859–862

    Article  PubMed  CAS  Google Scholar 

  • Jain SS, Anet FAL, Stahle CJ, Hud NV (2004) Enzymatic behavior by intercalating molecules in a template-directed ligation reaction. Angew Chem Int Ed 43:2004–2008

    Article  CAS  Google Scholar 

  • James KD, Ellington AD (1998) The endogenous synthesis of organic Compound. In: Brack A (ed) The molecular origins of life: assembling pieces of the puzzle. Cambridge University Press, Cambridge, pp 269–294

    Google Scholar 

  • Joyce GF (1987) Non-enzymatic template-directed synthesis of informational macromolecules. Cold Spring Harbor Symp Quant Biol 52:41–51

    PubMed  CAS  Google Scholar 

  • Joyce GF (2002) The antiquity of RNA-based evolution. Nature 418:214–221

    Article  PubMed  CAS  Google Scholar 

  • Joyce GF, Orgel LE (1999) Prospects for understanding the origin of the RNA World. In: Gesteland RF, Cech TR, Atkins JF (eds) The RNA world. Cold Spring Harbor Laboratory Press, New York, pp 49–77

    Google Scholar 

  • Kauffman S (2000) Investigations. Oxford University Press, Oxford

    Google Scholar 

  • Kozlov IA, Orgel LE (2000) Nonenzymatic template-directed synthesis of RNA from monomers. Mol Biol 34:781–789

    Article  CAS  Google Scholar 

  • Lee DH, Severin K, Ghadiri MR (1997) Autocatalytic networks: the transition from molecular self-replication to molecular ecosystems. Curr Opin Chem Biol 1:491–496

    Article  PubMed  CAS  Google Scholar 

  • Luisi PL (1998) About various definitions of life. Orig Life Evol Biosph 28:613–622

    Article  PubMed  CAS  Google Scholar 

  • Ma WT, Yu CW (2006) Intramolecular RNA replicase: possibly the first self-replicating molecule in the RNA world. Orig Life Evol Biosph 36:413–420

    Article  PubMed  CAS  Google Scholar 

  • Mikami K, Yamanaka M (2003) Symmetry breaking in asymmetric catalysis: racemic catalysis to autocatalysis. Chem Rev 103:3369–3400

    Article  PubMed  CAS  Google Scholar 

  • Noyori R (2002) Asymmetric catalysis: science and opportunities (Nobel lecture). Angew Chem Int Ed 41:2008–2022

    Article  CAS  Google Scholar 

  • Oberholzer T, Luisi PL (2002) The use of liposomes for constructing cell models. J Biol Phys 28:733–744

    Article  CAS  Google Scholar 

  • Orgel LE (1992) Molecular replication. Nature 358:203–209

    Article  PubMed  CAS  Google Scholar 

  • Orgel LE (2000) Self-organizing biochemical cycles. Proc Natl Acad Sci USA 97:12503–12507

    Article  PubMed  CAS  Google Scholar 

  • Orgel LE (2004) Prebiotic chemistry and the origin of the RNA World. Crit Rev Biochem Mol Biol 39:99–123

    Article  PubMed  CAS  Google Scholar 

  • Paul N, Joyce GF (2003) Self-replication. Curr Biol 13:R46

    Article  PubMed  CAS  Google Scholar 

  • Pross A (2004) Causation and the origin of Life. Metabolism or replication First? Orig Life Evol Biosph 34:307–321

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen S, Chen LH, Stadler BMR, Stadler PF (2004) Proto-organism kinetics: evolutionary dynamics of lipid aggregates with genes and metabolism. Orig Life Evol Biosph 34:171–180

    Article  PubMed  CAS  Google Scholar 

  • Reggia JA, Lohn JD, Chou HH (1998) Self-replicating structures: evolution, emergence, and computation. Artif Life 4:283–302

    Article  PubMed  CAS  Google Scholar 

  • Robertson A, Sinclair AJ, Philp D (2000) Minimal self-replicating systems. Chem Soc Rev 29:141–152

    Article  CAS  Google Scholar 

  • Ruiz-Mirazo K, Pereto J, Moreno A (2004) A universal definition of life: autonomy and open-ended evolution. Orig Life Evol Biosph 34:323–346

    Article  PubMed  CAS  Google Scholar 

  • Segre D, Lancet D, Kedem O, Pilpel Y (1998) Graded autocatalysis replication domain (GARD): kinetic analysis of self-replication in mutually catalytic sets. Orig Life Evol Biosph 28:501–514

    Article  CAS  Google Scholar 

  • Shapiro R (2000) A replicator was not involved in the origin of life. IUBMB Life 49:173–176

    PubMed  CAS  Google Scholar 

  • Sipper M (1998) Fifty years of research on self-replication: an overview. Artif Life 4:237–257

    Article  PubMed  CAS  Google Scholar 

  • Sipper M, Reggia JA, Emmite D (2001) Go forth and replicate. Sci Am 285:35–43

    Article  Google Scholar 

  • Strobel SA (2001) Biological catalysis—repopulating the RNA world. Nature 411:1003–1006

    Article  PubMed  CAS  Google Scholar 

  • Szathmary E (2000) The evolution of replicators. Philos Trans R Soc B Biol Sci 355:1669–1676

    Article  CAS  Google Scholar 

  • Szathmary E (2006) The origin of replicators and reproducers. Philos Trans R Soc B Biol Sci 361:1761–1776

    Article  CAS  Google Scholar 

  • Szathmary E, Smith JM (1997) From replicators to reproducers: the first major transitions leading to life. J Theor Biol 187:555–571

    Article  PubMed  CAS  Google Scholar 

  • Szostak JW, Bartel DP, Luisi PL (2001) Synthesizing life. Nature 409:387–390

    Article  PubMed  CAS  Google Scholar 

  • Tjivikua T, Ballester P, Rebek J Jr (1990) A self-replicating system. J Am Chem Soc 112:1249–1250

    Article  CAS  Google Scholar 

  • Todd MH (2002) Asymmetric autocatalysis: product recruitment for the increase in the chiral environment (PRICE). Chem Soc Rev 31:211–222

    Article  PubMed  CAS  Google Scholar 

  • Trost BM (2004) Asymmetric catalysis: an enabling science. Proc Natl Acad Sci USA 101:5348–5355

    Article  PubMed  CAS  Google Scholar 

  • Versees W, Loverix S, Vandemeulebroucke A, Geerlings P, Steyaert J (2004) Leaving group activation by aromatic stacking: an alternative to general acid catalysis. J Mol Biol 338:1–6

    Article  PubMed  CAS  Google Scholar 

  • Wintner EA, Rebek J (1996) Autocatalysis and the generation of self-replicating systems. Acta Chem Scand 50:469–485

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the National Natural Science Foundation of China (No. 30870660), the National 973 Fundamental Research Program (No. 2010CB530500, No. 2010CB530503), Hubei Natural Science Foundation of China (No. 2003S2113), and the State Key Laboratory of Software Engineering in Wuhan University (No. SKLSE01) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wentao Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, W., Yu, C., Zhang, W. et al. Self-replication: spelling it out in a chemical background. Theory Biosci. 130, 119–125 (2011). https://doi.org/10.1007/s12064-010-0117-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-010-0117-5

Keywords

Navigation