Skip to main content
Log in

Biomineralization: a proposed evolutionary origin for inorganic cofactors of enzymes

  • Original Paper
  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Abstract

In this paper, three different reactions of nanoparticles and proteins are explained. As a model system, the interactions of birnessite, which is a common manganese oxide in the environment, and bovine serum albumin, as a protein that has a strong affinity for a variety of inorganic molecules, are studied. The author proposes that the cofactor-formation in particular enzymes may be considered as a biomineralization in the presence of the protein. One of the numerous and very small nanoparticles produced in the presence of protein could be formed in an appropriate location in proteins and be used as a primitive inorganic core (cofactor) of enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arai T, Norde W (1990) The behavior of some model proteins at solid liquid interfaces: 1. adsorption from single protein solutions. Colloid Surface B 51:1–15

    Article  CAS  Google Scholar 

  • Becker K, Cormann KU, Nowaczyk MM (2011) Assembly of the water-oxidizing complex in photosystem II. J Photochem Photobio B 104:204–211

    Article  CAS  Google Scholar 

  • Bernal JD (1951) The physical basis of life. Routledge and Kegan Paul Ltd., London

    Google Scholar 

  • Bianchi A, Giorgi C, Ruzza P, Toniolo C, Milner-White J (2012) A synthetic hexapeptide designed to resemble a proteinaceous P-loop nest is shown to bind inorganic phosphate. Proteins Struct Funct Bioinformatics 80:1418–1424

    Article  CAS  Google Scholar 

  • Boyd SA, Mortland MM (1990) Enzyme interactions with clays and clay-organic matter complexes. In: Bollag J-M, Stotzky G (eds) Soil Biochemistry, vol 6. Marcel Dekker, New York, pp 1–20

    Google Scholar 

  • Cairns-Smith AG (1985) Seven clues to the origin of life. Cambridge University Press, Cambridge

    Google Scholar 

  • Cedervall T, Lynch I, Foy M, Berggård T, Donnelly SC, Cagney G, Linse S, Dawson KA (2007) Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew Chem Int Edit 46(30):5754–5756

    Article  CAS  Google Scholar 

  • Dörr M, Käßbohrer JK, Grunert R, Kreisel G, Brand WA, Werner RA, Geilmann H, Apfel C, Robl C, Weigand W (2003) A possible prebiotic formation of ammonia from dinitrogen on iron sulfide surfaces. Angew Chem Int Edit 42:1540–1543

    Article  Google Scholar 

  • Eady RR (2003) Current status of structure function relationships of vanadium nitrogenase. Coord Chem Rev 237:23–30

    Article  CAS  Google Scholar 

  • Haynes CA, Norde W (1994) Globular proteins at solid/liquid interfaces. Colloid Surface B 2(6):517–566

    Article  CAS  Google Scholar 

  • Kauffman SA (1993) The origins of order: self-organization and selection in evolution. Oxford University Press, New York

    Google Scholar 

  • Kaufman ED, Belyea J, Johnson MC, Nicholson ZM, Ricks JL, Shah PK, Bayless M, Pettersson T, Feldotö Z, Blomberg E, Claesson P, Franzen S (2007) Probing protein adsorption onto mercaptoundecanoic acid stabilized gold nanoparticles and surfaces by quartz crystal microbalance and ζ-potential measurements. Langmuir 23:6053–6062

    Article  PubMed  CAS  Google Scholar 

  • Lambert J (2008a) Adsorption and polymerization of amino acids on mineral surfaces: a review. Origins Life Evol B 38:211–242

    Article  CAS  Google Scholar 

  • Lambert J (2008b) Adsorption and polymerization of amino acids on mineral surfaces: a review. Origins Life Evol B 38:211–242

    Article  CAS  Google Scholar 

  • Liu R, Orgel LE (1998) Polymerization on the rocks: β-amino acids and arginine. Origins Life Evol B 28:245–257

    Article  CAS  Google Scholar 

  • Lynch I, Dawson KA (2008) Protein-nanoparticle interactions. Nano Today 3:40–47

    Article  CAS  Google Scholar 

  • Mamedova NN, Kotov NA, Rogach AL, Studer J (2001) Albumin-CdTe nanoparticle bioconjugates: preparation, structure, and interunit energy transfer with antenna effect. Nano Lett 1:281–286

    Article  CAS  Google Scholar 

  • Mayer SM, Lawson DM, Gormal CA, Roe SM, Smith BE (1999) New insights into structure-function relationships in nitrogenase: a 1.6 Å resolution X-ray crystallographic study of Klebsiella pneumoniae MoFe-protein. J Mol Biol 292(4):871–891

    Article  PubMed  CAS  Google Scholar 

  • McCandless FP, Hodgson KM, White RH, Bowman JD (1980) Reduction of nitric oxide with metal sulfides. Ind Eng Chern Process Des Dev 79:108–113

    Article  Google Scholar 

  • McEvoy JP, Brudvig GW (2006) Water-splitting chemistry of photosystem II. Chem Rev 106:4455–4483

    Article  PubMed  CAS  Google Scholar 

  • McGlynn SE, Mulder DW, Shepard EM, Broderick JB, Peters JW (2009) Hydrogenase cluster biosynthesis: organometallic chemistry nature’s way. Dalton Trans 22:4274–4285

    Google Scholar 

  • Meziani MJ, Sun YP (2003) Protein-conjugated nanoparticles from rapid expansion of supercritical fluid solution into aqueous solution. J Am Chem Soc 125:8015–8018

    Article  PubMed  CAS  Google Scholar 

  • Milner-White EJ, Russell MJ (2011) Functional capabilities of the earliest peptides and the emergence of life. Genes 2:671–688

    Article  CAS  Google Scholar 

  • Naidja A, Huang PM, Bollag JM (2000) Enzyme-clay interactions and their impact on transformations of natural and anthropogenic organic compounds in soil. J Environ Qual 29:677–691

    Article  CAS  Google Scholar 

  • Naidja A, Liu C, Huang PM (2002) Formation of protein–birnessite complex: XRD, FTIR, and AFM analysis. Colloid Surface B 251:46–56

    Article  CAS  Google Scholar 

  • Najafpour MM (2006) Current molecular mechanisms of photosynthetic oxygen evolution. Plant Biosyst 140(2):163–170

    Article  Google Scholar 

  • Najafpour MM (2011a) Hollandite as a functional and structural model for the biological water oxidizing complex: manganese–calcium oxide minerals as a possible evolutionary origin for the CaMn4 cluster of the biological water oxidizing complex. Geomicrobiol J 28(8):714–718

    Article  CAS  Google Scholar 

  • Najafpour MM (2011b) Calcium–manganese oxides as structural and functional models for active site in oxygen evolving complex in photosystem II: lessons from simple models. J Photochem Photobiol B 104:111–117

    Article  PubMed  CAS  Google Scholar 

  • Najafpour MM (2011c) A soluble form of nano-sized colloidal manganese (IV) oxide as an efficient catalyst for water oxidation. Dalton Trans 40(15):3805–3807

    Article  PubMed  CAS  Google Scholar 

  • Najafpour MM (2011d) Amorphous manganese–calcium oxides as a possible evolutionary origin for the camn4 cluster in photosystem ii. Origins Life Evol B 41:237–247

    Article  CAS  Google Scholar 

  • Najafpour MM (2011e) Mixed-valence manganese calcium oxides as efficient catalysts for water oxidation. Dalton Trans 40(15):3793–3795

    Article  PubMed  CAS  Google Scholar 

  • Najafpour MM, Govindjee (2011) Oxygen evolving complex in photosystem ii: better than excellent. Dalton Trans 40(36):9076–9084

    Article  PubMed  CAS  Google Scholar 

  • Najafpour MM, Ehrenberg T, Wiechen M, Kurz P (2010) Calcium manganese(III) oxides (CaMn2O× H2O) as biomimetic oxygen-evolving catalysts. Angew Chem Int Edit 49:2233–2237

    Article  CAS  Google Scholar 

  • Najafpour MM, Nayeri S, Pashaei B (2011) Nano-size amorphous calcium–manganese oxide as an efficient and biomimetic water oxidizing catalyst for artificial photosynthesis: back to manganese. Dalton Trans 40:9374–9378

    Article  PubMed  CAS  Google Scholar 

  • Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc Society 85:3533–3539

    Article  CAS  Google Scholar 

  • Pollet R, Boehme C, Marx D (2006) Ab initio simulations of desorption and reactivity of glycine at a water–pyrite interface at “iron–sulfur world” prebiotic conditions. Origins Life Evol B 36:363–379

    Article  CAS  Google Scholar 

  • Rode BM, Son HL, Suwannachot Y, Bujdák J (1997) The combination of salt-induced peptide formation reaction and clay catalysis: a way to higher peptides under primitive earth conditions. Origins Life Evol B 27:325–337

    Article  Google Scholar 

  • Russell MJ, Allen JF, Milner-White EJ (2008) Inorganic complexes enabled the onset of life and oxygenic photosynthesis. In: Allen JE, Gantt E, Golbeck JH, Osmond B (eds) Energy from the Sun: 14th international congress on photosynthesis. Springer, Berlin, pp 1193–1198

  • Sauer Y, Yachandra V (2004) A possible evolutionary origin for the Mn4 cluster of the photosynthetic water oxidation complex from natural MnO2 precipitates in the early ocean. PNAS 99(13):8631–8636

    Article  Google Scholar 

  • Shevela D, Koroidov S, Najafpour MM, Messinger J, Kurz P (2011) Calcium manganese oxides as oxygen evolution catalysts: O2 formation pathways indicated by 18O-labelling studies. Chem A Eur J 17(19):5415–5423

    Article  CAS  Google Scholar 

  • Umena Y, Kawakami K, Shen JR, Kamiya N (2011) Crystal structure of oxygen evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–60

    Article  PubMed  CAS  Google Scholar 

  • Vallee A, Vincent H, Pradier C (2010) Peptide interactions with metal and oxide surfaces. Accounts Chem Res 43:1297–1306

    Article  CAS  Google Scholar 

  • Vieira AP, Berndt G, Junior GIG, Mauro E, Paesano A Jr, Santana H, Costa ACS, Zaia CTBV, Zaia DAM (2011) Adsorption of cysteine on hematite, magnetite and ferrihydrite: FT-IR, Mossbauer, EPR spectroscopy and X-ray diffractometry studies. Amino Acids 40:205–214

    Article  PubMed  CAS  Google Scholar 

  • Wächtershäuser G (1988) Before enzymes and templates: theory of surface metabolism. Microbiol Mol Biol Rev 52(4):452–484

    Google Scholar 

  • Wächtershäuser G (2007) On the chemistry and evolution of the pioneer organism. Chem Biodivers 4(4):584–602

    Article  PubMed  Google Scholar 

  • Watanabe S, Arai T, Matsumi R, Atomi H, Imanaka T, Miki K (2009) Crystal structure of HypA, a nickel-binding metallochaperone for [NiFe] hydrogenase maturation. J Mol Biol 4:448–459

    Article  Google Scholar 

  • Yang L, Shen QM, Zhou JG, Jiang K (2005) Biomimetic synthesis of CdS nanocrystals in the pepsin solution. Mater Lett 59:2889–2892

    Article  CAS  Google Scholar 

  • Yang L, Xing RM, Shen QM, Jiang K, Ye F, Wang JY, Ren QS (2006) Fabrication of protein-conjugated silver sulfide nano-rods in the bovine serum albumin solution. J Phys Chem B 110:10534–10539

    Article  PubMed  CAS  Google Scholar 

  • Zaharieva I, Najafpour MM, Wiechen M, Haumann M, Kurz P, Dau H (2011) Synthetic manganese–calcium oxides mimic the water-oxidizing complex of photosynthesis functionally and structurally. Energy Environ Sci 4:2400–2408

    Article  CAS  Google Scholar 

  • Zai DAM (2004) Review of adsorption of amino acids on minerals: was it important for origin of life? Amino Acids 27:113–118

    Google Scholar 

  • Zaia DAM, Zaia CTBV, Santana HD (2008) Which amino acids should be used in prebiotic chemistry studies? Origins Life Evol B 38:469–488

    Article  CAS  Google Scholar 

  • Zamaraev KI, Romannikov NV, Salganik RI, Wlassoff WA, Khramtsov VV (1997) Modelling of the prebiotic synthesis of oligopeptides: silicate catalysts help to overcome the critical stage. Origins Life Evol B 27:325–337

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author is grateful to Institute for Advanced Studies in Basic Sciences for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mahdi Najafpour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Najafpour, M.M. Biomineralization: a proposed evolutionary origin for inorganic cofactors of enzymes. Theory Biosci. 131, 265–272 (2012). https://doi.org/10.1007/s12064-012-0160-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-012-0160-5

Keywords

Navigation