Skip to main content
Log in

Oppositional elephant herding optimization with dynamic Cauchy mutation for multilevel image thresholding

  • Research Paper
  • Published:
Evolutionary Intelligence Aims and scope Submit manuscript

Abstract

This paper presents an improved elephant herding optimization (IEHO) to solve the multilevel image thresholding problem for image segmentation by introducing oppositional-based learning (OBL) and dynamic cauchy mutation (DCM). OBL accelerates the convergence rate and enhances the performance of standard EHO whereas DCM mitigates the premature convergence. The suggested optimization approach maximizes two popular objective functions: ‘Kapur’s entropy’ and ‘between-class variance’ to estimate optimized threshold values for segmentation of the image. The performance of the proposed technique is verified on a set of test images taken from the benchmark Berkeley segmentation dataset. The results are analyzed and compared with conventional EHO and other four popular recent metaheuristic algorithms namely cuckoo search, artificial bee colony, bat algorithm, particle swarm optimization and one classical method named dynamic programming found from the literature. Experimental results show that the proposed IEHO provides promising performance compared to other methods in view of optimized fitness value, peak signal-to-noise ratio, structure similarity index and feature similarity index. The suggested algorithm also has better convergence than the other methods taken into consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wehrens R, Buydens LMC, Lin Z, Lei Z, Xuanqin M (2000) Classical and nonclassical optimization methods. Encycl Anal Chem 1:9678–9689

    Google Scholar 

  2. Merzban MH, Elbayoumi M (2019) Efficient solution of otsu multilevel image thresholding: a comparative study. Expert Syst Appl 116:299–309

    Article  Google Scholar 

  3. Mousavirad Seyed Jalaleddin, Ebrahimpour-Komleh Hossein (2017) Multilevel image thresholding using entropy of histogram and recently developed population-based metaheuristic algorithms. J Evol Intell 10(1):45–75

    Article  Google Scholar 

  4. Mahesh KM, Renjit A (2018) Evolutionary intelligence for brain tumor recognition from MRI images: a critical study and review. J Evol Intell 11(1–2):19–30

    Article  Google Scholar 

  5. Yin PY (1999) A fast scheme for multilevel thresholding using genetic algorithms. Signal Processing 72:85–95

    Article  MATH  Google Scholar 

  6. Hammouche K, Diaf M, Siarry P (2008) A multilevel automatic thresholding method based on a genetic algorithm for a fast image segmentation. Comput Vis Image Underst 109(2):163–175

    Article  Google Scholar 

  7. Zhang J, Li H, Tang Z, Lu Q, Zheng X, Zhou J (2014) An improved quantum inspired genetic algorithm for image multilevel thresholding segmentation. Math Problems Eng 112:1–12

    Google Scholar 

  8. Simon D (2008) Biogeography based optimization. IEEE Trans Evol Comput 12(6):702–713

    Article  Google Scholar 

  9. Yin PY (2007) Multilevel minimum cross entropy threshold selection based on particle swarm optimization algorithm. Appl Math Comput 184(2):503–513

    MathSciNet  MATH  Google Scholar 

  10. Kennedy J, Eberhart RC (1995) Particle swarm optimization. Proc IEEE Int Conf Neural Netw 4:1942–1948

    Article  Google Scholar 

  11. Akay B (2013) A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding. Appl Soft Comput 13:3066–3091

    Article  Google Scholar 

  12. Bhandari AK, Kumar A, Singh GK (2015) Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using Kapur’s Otsu and Tsallis functions. Expert Syst Appl 42:1573–1601

    Article  Google Scholar 

  13. Gandomi AH, Yang XS, Talatahari S, Deb S (2012) Coupled eagle strategy and differential evolution for unconstrained and constrained global optimization. Comput Math Appl 63(1):191–200

    Article  MathSciNet  MATH  Google Scholar 

  14. Sathya PD, Kayalvizhi R (2010) Optimum multilevel image thresholding based on Tsallis entropy method with bacterial foraging algorithm. Int J Comput Sci 7(5):336–343

    Google Scholar 

  15. Tao W, Jin H, Liu L (2007) Object segmentation using ant colony optimization algorithm and fuzzy entropy. Pattern Recognit Lett 28(7):788–796

    Article  Google Scholar 

  16. Agrawal S, Panda R, Bhuyan S, Panigrahi BK (2013) Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm. Swarm Evol Comput 11:16–30

    Article  Google Scholar 

  17. Horng MH (2010) Multilevel minimum cross entropy threshold selection based on the honey bee mating optimization. Expert Syst Appl 37:4580–4592

    Article  Google Scholar 

  18. Ouadfel S, Taleb-Ahmed A (2016) Social spiders optimization and flower pollination algorithm for multilevel image thresholding: a performance study. Expert Syst Appl 55:566–584

    Article  Google Scholar 

  19. Yang XS (2010) A new metaheuristic bat-inspired Algorithm. Stud Comput Intell 284:65–74

    MATH  Google Scholar 

  20. Bakhshali MA, Shamsi M (2014) Segmentation of color lip images by optimal thresholding using bacterial foraging optimization (BFO). J Comput Sci 5(2):251–257

    Article  Google Scholar 

  21. Abdul Kayom M, Khairuzzaman SC (2017) Multilevel thresholding using grey wolf optimizer for image segmentation. Expert Syst Appl 86:64–76

    Article  Google Scholar 

  22. El Aziz MA, Ewees AA, Hassanien AE (2017) Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation. Expert Syst Appl 83:242–256

    Article  Google Scholar 

  23. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1:67–82

    Article  Google Scholar 

  24. Wang H, Wu Z, Rahnamayan S, Liu Y, Ventresca M (2011) Enhancing particle swarm optimization using generalized opposition-based learning. Inf Sci 181:4699–4714

    Article  MathSciNet  Google Scholar 

  25. Yang X, Huang Z (2012) Opposition-based artificial bee colony with dynamic cauchy mutation for function optimization. Int J Adv Comput Technol 4(4):56–62

    Google Scholar 

  26. Wang GG, Deb S, Gandomi AH, Alavi AH (2016) Opposition-based kill herd algorithm with Cauchy mutation and position clamping. Neurocomputing 177:147–157

    Article  Google Scholar 

  27. Rahnamayan S, Tizhoosh Hamid R, Salama MMA (2008) Opposition-based differential evolution. IEEE Trans Evol Comput 12(1):64–79

    Article  Google Scholar 

  28. Wang GG, Deb S, Geo X-Z, Coelho LDS (2016) A new metaheuristic optimization algorithm motivated by elephant herding behavior. Int J Bio-Inspir Comput 8(6):394–409

    Article  Google Scholar 

  29. Meena NK, Parashar S, Swarnkar A, Gupta N, Niazi KR (2017) Improved elephant herding optimization for multiobjective DER accommodation in distribution systems. IEEE Trans Ind Inf 14(3):1029–1039

    Article  Google Scholar 

  30. Tuba E, Ribic I, Hrosik RC, Tuba M (2017) Support vector machine optimized by elephant herding algorithm for erythemato squamous diseases detection. Information Technology and Quantitative Management (ITQM). Proc Comput Sci 122:916–923

    Article  Google Scholar 

  31. Tizhoosh HR (2006) Opposition-based reinforcement learning. J Adv Comput Intell Intell Inf 10(4):578–585

    Article  MathSciNet  Google Scholar 

  32. Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3:82–102

    Article  Google Scholar 

  33. Wang H, Liu Y, Zeng SY, Li H, Li C (2007) Opposition-based particle swarm algorithm with Cauchy mutation. In: Proceedings of IEEE congress on evolutionary computation, pp 4750–4756

  34. Wang H, Liu Y, Li C, Zeng S (2007) A hybrid particle swarm algorithm with Cauchy mutation. In: IEEE swarm intelligence symposium, Honolulu, Hawaii, pp 356–360

  35. Rahnamayan S, Tizhoosh HR, Salama M (2008) Opposition versus randomness in soft computing techniques. Appl Soft Comput 8(2):906–918

    Article  Google Scholar 

  36. Rahnamayan S, Tizhoosh Hamid R, Salama MMA (2007) Opposition-based differential evolution(ODE) with variable jumping rate. In: IEEE symposium on foundations of computational intelligence

  37. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans SMC 9(1):62–66

    Google Scholar 

  38. Kapur JN, Sahoo PK, Wong AKC (1985) A new method for gray-level picture thresholding using the entropy of the histogram. Comput Vis Gr Image Process 29:273–285

    Article  Google Scholar 

  39. Zhou W, Alan CB, Hamid SRSR, Eero SP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  40. Lin Z, Lei Z, Xuanqin M, Zhang D (2011) FSIM: a feature similarity index for image quality assessment. IEEE Trans Image Process 20(8):2378–2386

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Falguni Chakraborty.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, F., Roy, P.K. & Nandi, D. Oppositional elephant herding optimization with dynamic Cauchy mutation for multilevel image thresholding. Evol. Intel. 12, 445–467 (2019). https://doi.org/10.1007/s12065-019-00238-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12065-019-00238-1

Keywords

Navigation