Skip to main content
Log in

A comprehensive study of the resource discovery techniques in Peer-to-Peer networks

  • Published:
Peer-to-Peer Networking and Applications Aims and scope Submit manuscript

An Erratum to this article was published on 21 February 2015

Abstract

Resource discovery is an important part of any distributed and resource sharing systems, like Peer-to-Peer (P2P) networks. In this paper we provide a comprehensive study and survey of the state of the art resource discovery techniques which have been used in P2P so far. We analyze and examine the resource discovery techniques into four main categories: unstructured, structured, super-peer and hybrid. We reviewed the major development in these four categories and outlined new challenges. This paper also provides a discussion of differences between considered techniques in terms of scalability, dynamicity, reliability, load balancing, response time and robustness in order to provide insights on the identification of open issues and provide guidelines for future researches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. www.bittorrent.com

  2. www.napster.com

  3. www.emule-project.net

  4. www.gnutellaforums.com

  5. www.pplive.en.softonic.com

  6. www.skype.com

  7. www.coolstreaming.us

  8. www.bittorrent.org

  9. www.gnutellaforums.com

  10. www.kazaa.com

  11. www.gnutella2.com

  12. www.morphus.com

  13. www.napster.com

  14. www.gnutellaforums.com

  15. www.fasttrack.co.uk

References

  1. Rafat KF, Sher M (2013) Secure digital steganography for ASCII text documents. Arab J Sci Eng 1–16

  2. Lu S-H et al (2013) A scalable P2P overlay based on arrangement graph with minimized overhead. Peer-to-Peer Netw Appl 1–14

  3. Gkantsidis C, Miller J, Rodriguez P (2006) Anatomy of a P2P content distribution system with network coding. In: IPTPS

  4. Vogt C, Werner MJ, Schmidt TC (2013) Leveraging WebRTC for P2P content distribution in web browsers. In: 21st IEEE Intern. Conf. on Network Protocols (ICNP 2013), Demo Session. IEEEPress, Piscataway

  5. Kotevski Z, Mitrevski P (2013) Hybrid fluid modeling approach for performance analysis of P2P live video streaming systems. Peer-to-Peer Netw Appl 1–17

  6. Chadagorn A et al PileCast: multiple bit rate live video streaming over BitTorrent. J Netw Comput Appl (0)

  7. Torres R et al (2013) Characterization of community based-P2P systems and implications for traffic localization. Peer-to-Peer Netw Appl 6(2):118–133

    Article  Google Scholar 

  8. Suto K et al (2012) Designing P2P networks tolerant to attacks and faults based on bimodal degree distribution. J Commun 7(8):587–595

    Article  Google Scholar 

  9. Rius J, Cores F, Solsona F (2013) Cooperative scheduling mechanism for large-scale peer-to-peer computing systems. J Netw Comput Appl

  10. Cholez T et al (2013) Detection and mitigation of localized attacks in a widely deployed P2P network. Peer-to-Peer Netw Appl 6(2):155–174

    Article  Google Scholar 

  11. Luo F et al (2012) Scheduling in an unstructured peer-to-peer-based high performance computing system. Kybernetes 41(9):1209–1215

    Article  Google Scholar 

  12. Trunfio P et al (2007) Peer-to-peer resource discovery in grids: models and systems. Futur Gener Comput Syst 23(7):864–878

    Article  Google Scholar 

  13. Hawa M, As-Sayid-Ahmad L, Khalaf L (2013) On enhancing reputation management using peer-to-peer interaction history. Peer-to-Peer Netw Appl 6(1):101–113

    Article  Google Scholar 

  14. Krauter K, Buyya R, Maheswaran M (2002) A taxonomy and survey of grid resource management systems. Softw Pract Experience 32:135–164

    Article  MATH  Google Scholar 

  15. Singh MP (2001) Peering at peer-to-peer computing. IEEE Internet Comput 5(1):4–5

    Google Scholar 

  16. Tan Y-H, Lü K, Lin Y-P (2012) Organisation and management of shared documents in super-peer networks based semantic hierarchical cluster trees. Peer-to-Peer Netw Appl 5(3):292–308

    Article  Google Scholar 

  17. Castellà D et al (2013) Analyzing locality over a P2P computing architecture. J Netw Comput Appl 36(6):1610–1619

    Article  Google Scholar 

  18. Eng Keong L et al (2005) A survey and comparison of peer-to-peer overlay network schemes. IEEE Commun Surv Tutor 7(2):72–93

    Article  Google Scholar 

  19. Ratnasamy S et al (2001) A scalable content-addressable network. In: Proceedings of the 2001 conference on Applications, technologies, architectures, and protocols for computer communications. ACM, San Diego. p. 161–172

  20. Stoica I et al (2001) Chord: a scalable peer-to-peer lookup service for internet applications. In: Proceedings of the 2001 conference on Applications, technologies, architectures, and protocols for computer communications. ACM, San Diego. p. 149–160

  21. Rowstron A, Druschel P (2001) Pastry: scalable, decentralized object location, and routing for large-scale peer-to-peer systems. In: Guerraoui R (ed) Middleware 2001. Springer, Berlin Heidelberg, pp 329–350

    Chapter  Google Scholar 

  22. Li L et al (2013) DS2: A DHT-based substrate for distributed services. Peer-to-Peer Netw Appl 6(4):380–396

    Article  Google Scholar 

  23. Gao G et al (2012) Proactive replication for rare objects in unstructured peer-to-peer networks. J Netw Comput Appl 35(1):85–96

    Article  Google Scholar 

  24. Shah S (2007) Using P2P approach for resource discovery in Grid Computing. In: Interaction and system design. Blekinge Institute of Technology, Sweden. p. 46

  25. Jafari Navimipour N et al (2014) Resource discovery mechanisms in grid systems: a survey. J Netw Comput Appl 0

  26. Clip D (2007) Gnutella protocol specification v0. 4

  27. Qiao Y, Bustamante FE (2006) Structured and unstructured overlays under the microscope: a measurement-based view of two P2P systems that people use. In: Proceedings of the annual conference on USENIX ‘06 Annual Technical Conference. USENIX Association, Boston, p. 31–31

  28. Jin X, Chan S-HG (2010) Unstructured peer-to-peer network architectures. In: Handbook of peer-to-peer networking. Springer, p. 117–142

  29. Loo B et al (2005) The case for a hybrid P2P search infrastructure. In: Voelker G, Shenker S (eds) Peer-to-peer systems III. Springer, Berlin Heidelberg, pp 141–150

    Chapter  Google Scholar 

  30. Qu W, Zhou W, Kitsuregawa M (2010) Sharable file searching in unstructured peer-to-peer systems. J Supercomput 51(2):149–166

    Article  Google Scholar 

  31. Mashayekhi H, Habibi J (2010) Combining search and trust models in unstructured peer-to-peer networks. J Supercomput 53(1):66–85

    Article  Google Scholar 

  32. Akbari Torkestani J (2012) A distributed resource discovery algorithm for P2P grids. J Netw Comput Appl 35(6):2028–2036

    Article  Google Scholar 

  33. Deng Y, Wang F, Ciura A (2009) Ant colony optimization inspired resource discovery in P2P grid systems. J Supercomput 49(1):4–21

    Article  Google Scholar 

  34. Kocak T, Lacks D (2012) Design and analysis of a distributed grid resource discovery protocol. Clust Comput 15(1):37–52

    Article  Google Scholar 

  35. Shojafar M et al (2013) An efficient and distributed file search in unstructured peer-to-peer networks. Peer-to-Peer Netw Appl 1–17

  36. Mirtaheri SL, Sharifi M (2014) DHMCF: an efficient resource discovery framework in pure unstructured peer-to-peer systems. Comput Netw 59:213–226

    Article  Google Scholar 

  37. Hameurlain A, Cokuslu D, Erciyes K (2010) Resource discovery in grid systems: a survey. Int J Metadata Semant Ontologies 5(3):251–263

    Article  Google Scholar 

  38. Lee G et al (2012) An efficient search mechanism for supporting partial filename queries in structured peer-to-peer overlay. Peer-to-Peer Netw Appl 5(4):340–349

    Article  Google Scholar 

  39. Fouad B et al (2011) Scalable grid resource discovery through distributed search. Int J Distrib Parallel Syst 2(5):1–19

    Article  Google Scholar 

  40. Dabek F et al (2001) Building peer-to-peer systems with chord, a distributed lookup service. In: Proceedings of the Eighth Workshop on Hot Topics in Operating Systems, 2001

  41. Flocchini P, Nayak A, Xie M (2005) Hybrid-chord: a peer-to-peer system based on chord. In: Ghosh RK, Mohanty H (eds) Distributed computing and internet technology. Springer, Berlin Heidelberg, pp 194–203

    Google Scholar 

  42. Cox R, Muthitacharoen A, Morris R (2002) Serving DNS using a peer-to-peer lookup service. In: Revised papers from the first international workshop on peer-to-peer systems. Springer-Verlag, p. 155–165

  43. Liu C-L, Wang C-Y, Wei H-Y (2010) Cross-layer mobile chord P2P protocol design for VANET. Int J Ad Hoc Ubiquit Comput 6(3):150–163

    Article  MathSciNet  Google Scholar 

  44. Avramidis A et al (2012) Chord-PKI: a distributed trust infrastructure based on P2P networks. Comput Netw 56(1):378–398

    Article  Google Scholar 

  45. Amad M et al (2012) HPM: a novel hierarchical peer-to-peer model for lookup acceleration with provision of physical proximity. J Netw Comput Appl 35(6):1818–1830

    Article  Google Scholar 

  46. Yun Y et al (2012) An improved hybrid P2P control model based on chord. In: Second International Conference on Instrumentation, Measurement, Computer, Communication and Control (IMCCC), 2012

  47. Meshkova E et al (2008) A survey on resource discovery mechanisms, peer-to-peer and service discovery frameworks. Comput Netw 52(11):2097–2128

    Article  Google Scholar 

  48. Bandara HMND, Jayasumana AP (2013) Distributed, multi-user, multi-application, and multi-sensor data fusion over named data networks. Comput Netw 57(16):3235–3248

    Article  Google Scholar 

  49. Fraigniaud P, Gauron P (2006) D2B: a de Bruijn based content-addressable network. Theor Comput Sci 355(1):65–79

    Article  MATH  MathSciNet  Google Scholar 

  50. Hof H-J, Baumgart I, Zitterbart M (2007) Key exchange for service discovery in secure content addressable sensor networks. In: Braun T, Carle G, Stiller B (eds) Kommunikation in Verteilten Systemen (KiVS). Springer, Berlin Heidelberg, pp 139–150

    Chapter  Google Scholar 

  51. Yu J et al (2007) KZCAN: aKautz based content-addressable network. In: IEEE Eighth ACIS International Conference on Software engineering, artificial intelligence, networking, and parallel/distributed computing, 2007. SNPD 2007

  52. Boukhelef D, Kitagawa H (2008) Multi-ring infrastructure for content addressable networks. In: On the move to meaningful internet systems: OTM 2008. Springer, p. 193–211

  53. Schmidt C, Parashar M (2003) Flexible information discovery in decentralized distributed systems. In: Proceedings of the 12th IEEE International Symposium on High Performance Distributed Computing, IEEE Computer Society, p. 226

  54. Andrzejak A, Xu Z (2002) Scalable, efficient range queries for grid information Services. In: Proceedings of the Second International Conference on Peer-to-Peer Computing, IEEE Computer Society. p. 33

  55. Merz P, Gorunova K (2007) Fault-tolerant resource discovery in peer-to-peer grids. J Grid Comput 5(3):319–335

    Article  Google Scholar 

  56. Giordanelli R, Mastroianni C, Meo M (2012) Bio-inspired P2P systems: the case of multidimensional overlay. ACM Trans Auton Adapt Syst (TAAS) 7(4):35

    Google Scholar 

  57. Lee G, Chen Y-C, Lee CC (2013) Supporting similarity range queries efficiently by using reference points in structured P2P overlays. In: Advances in intelligent systems and applications-Volume 1. Springer, p. 645–652

  58. Jagadish H et al (2005) iDistance: An adaptive B+ −tree based indexing method for nearest neighbor search. ACM Trans Database Syst (TODS) 30(2):364–397

    Article  Google Scholar 

  59. Li Y et al (2004) Pwsd: a scalable web service discovery architecture based on peer-to-peer overlay network. In: Advanced web technologies and applications, Springer. p. 291–300.

  60. Zhygmanovskyi A, Yoshida N (2013), Peer-to-Peer network for flexible service sharing and discovery. In: Multiagent system technologies. Springer, p. 152–165

  61. Si H et al (2013) Semantic web services publication and OCT-based discovery in structured P2P network. SOCA 7(3):169–180

    Article  Google Scholar 

  62. McIlraith SA, Son TC, Zeng H (2001) Semantic web services. IEEE Intell Syst 16(2):46–53

    Article  Google Scholar 

  63. Beverly Yang B, Garcia-Molina H (2003) Designing a super-peer network. In: Proceedings 19th International Conference on Data Engineering, 2003

  64. Kurve A et al (2013) Optimizing cluster formation in super-peer networks via local incentive design. Peer-to-Peer Netw Appl 1–21

  65. Mannak R, Ridder Hd, Keyson DV (2004) The human side of sharing in peer-to-peer networks. In: Proceedings of the 2nd European Union symposium on ambient intelligence. ACM, Eindhoven, p. 59–64

  66. Chen S et al (2008) Efficient file search in non-DHT P2P networks. Comput Commun 31(2):304–317

    Article  Google Scholar 

  67. Stokes M (2002) Gnutella2 specifications part one. Rapport technique

  68. Stokes M (2003) Gnutella2 specification document–first draft. Gnutella2 website (http://www.gnutella2.com/gnutella2_draft.htm)

  69. Tsoumakos D, Roussopoulos N (2006) Analysis and comparison of P2P search methods. In: Proceedings of the 1st international conference on Scalable information systems. ACM, Hong Kong, p 25

    Chapter  Google Scholar 

  70. Tsoumakos D, Roussopoulos N. A comparison of peer-to-peer search methods. In: WebDB. 2003. Citeseer

  71. Haasn MI (2011) Semantic technology and super-peer architecture for internet based distributed system resource discovery. Int J New Comput Archit Appl (IJNCAA) 1(4):848–865

    Google Scholar 

  72. Ali HA, Ahmed MA (2012) HPRDG A scalable framework hypercube-P2P-based for resource discovery in computational Grid. In: 22nd International Conference on Computer Theory and Applications (ICCTA), 2012

  73. Zhang W et al (2012) A reputation-based peer-to-peer architecture for semantic service discovery in distributed manufacturing environments. Concurr Eng 20(3):237–253

    Article  Google Scholar 

  74. Liu M, Harjula E, Ylianttila M (2013) An efficient selection algorithm for building a super-peer overlay. J Internet Serv Appl 4(1):1–12

    Article  Google Scholar 

  75. Jelasity M, Kowalczyk W, Van Steen M (2003) Newscast computing, Technical Report IR-CS-006, Vrije Universiteit Amsterdam, Department of Computer Science, Amsterdam, The Netherlands

  76. Montresor A (2004) A robust protocol for building superpeer overlay topologies. In: Peer-to-Peer Computing, 2004. Proceedings. Proceedings. Fourth International Conference on

  77. Mastroianni C, Talia D, Verta O (2005) A super-peer model for resource discovery services in large-scale grids. Futur Gener Comput Syst 21(8):1235–1248

    Article  Google Scholar 

  78. Papadakis H et al (2007) Design and implementation of a hybrid P2P-based grid resource discovery system. 89–101

  79. Yang M, Yang Y (2010) An efficient hybrid peer-to-peer system for distributed data sharing. IEEE Trans Comput 59(9):1158–1171

    Article  MathSciNet  Google Scholar 

  80. Zaharia M, Keshav S (2008) Gossip based search selection in hybrid Peer to Peer networks. Concurr Comput Pract Experience 20(2):139–153

    Article  Google Scholar 

  81. Barjini H, Othman M, Ibrahim H (2010) An efficient hybridflood searching algorithm for unstructured peer-to-peer networks. In: Information computing and applications. Springer, p. 173–180

  82. Tsoumakos D, Roussopoulos N (2003) Adaptive probabilistic search for peer-to-peer networks. In: Proceedings Third International Conference on Peer-to-Peer Computing, 2003. (P2P 2003)

  83. Qiuyan H et al (2011) A location-aware efficient content-based searching over unstructured P2P network. In: 2011 International Conference on Network Computing and Information Security (NCIS)

  84. Wang S et al (2009) SimpleGrid toolkit: enabling geosciences gateways to cyber infrastructure. Comput Geosci 35(12):2283–2294

    Article  Google Scholar 

  85. Yang W-S, Hwang S-Y (2013) iTravel: a recommender system in mobile peer-to-peer environment. J Syst Softw 86(1):12–20

    Article  Google Scholar 

  86. Jagadish HV et al (2006) Speeding up search in peer-to-peer networks with a multi-way tree structure. In: Proceedings of the 2006 ACM SIGMOD international conference on Management of data.ACM, Chicago. p. 1–12

  87. Caminero AC et al (2013) P2P-based resource discovery in dynamic grids allowing multi-attribute and range queries. Parallel Comput 39(10):615–637

    Article  Google Scholar 

  88. Moro MM (2009) Range query. In: Liu L, ÖZsu MT (eds) Encyclopedia of database systems, Springer US. p. 2324–2325

  89. Souri A, Jafari Navimipour N (2013) Behavioral modeling and formal verification of resource discovery in grid computing. Expert Syst Appl

  90. Sistla AP et al (1997) Modeling and querying moving objects. In: Proceedings 13th International Conference on Data Engineering, 1997

  91. Hao Y, Liu G, Wen N (2012) An enhanced load balancing mechanism based on deadline control on GridSim. Futur Gener Comput Syst 28(4):657–665

    Article  Google Scholar 

  92. Fan B et al (2010) Balancing throughput, robustness, and in-order delivery in P2P VoD. In: Proceedings of the 6th International Conference. ACM

  93. Hassanzadeh Sharif S et al (2013) A review on search and discovery mechanisms in social networks. Int J Inf Eng Electron Bus 5(6):64–73

    Article  Google Scholar 

Download references

Acknowledgments

The authors are immensely thankful to the anonymous reviewers for their detailed review and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Jafari Navimipour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jafari Navimipour, N., Sharifi Milani, F. A comprehensive study of the resource discovery techniques in Peer-to-Peer networks. Peer-to-Peer Netw. Appl. 8, 474–492 (2015). https://doi.org/10.1007/s12083-014-0271-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12083-014-0271-5

Keywords

Navigation