Skip to main content

Advertisement

Log in

Big program code dissemination scheme for emergency software-define wireless sensor networks

  • Published:
Peer-to-Peer Networking and Applications Aims and scope Submit manuscript

Abstract

Program codes as one of big data should be disseminated to all sensor nodes in a wireless software-define smart network (WSDSN) quickly. Due to the limited energy of sensor nodes, sensor nodes adopt asynchronous duty-cycle model to save energy. But neighbor nodes with sleep status can’t receive program codes, resulting in longer transmission delay for spreading program codes. In this paper, an adjustable duty cycle based fast disseminate (ADCFD) scheme is proposed for minimum-transmission broadcast (MTB) in a smart wireless software-define network. In an ADCFD scheme, the duty cycle of nodes are adjusted to receive program codes timely. Thus, the transmission times and emergency transmission delay are reduced. The theoretical analysis and experimental results show that compare to previous broadcast scheme, the number of transmission in an ADCFD scheme is reduced by 44.776%–118.519%, the delay from disseminating program codes is reduced by 17.895%- 107.527%, while retaining network lifetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43

Similar content being viewed by others

References

  1. Lim H, Kim C (2001) Flooding in wireless ad hoc networks. Comput Commun 24(3–4):353–363

    Article  Google Scholar 

  2. Liao X, Zheng L, He B et al (2015) A performance debugging framework for unnecessary lock contentions with record/replay techniques. IEEE Trans Parallel Distrib Syst. doi:10.1109/TPDS.2015.2472412

  3. Zeng D, Gu L, Guo S, Cheng Z et al (2016) Joint optimization of task scheduling and image placement in fog computing supported software-defined Embedded system. IEEE Trans Comput 65(12):3702–3712

    Article  MathSciNet  MATH  Google Scholar 

  4. Wang K, Gavler A, Machuca C, Wosinska L et al (2016) Migration strategies for FTTx solutions based on active optical networks. IEEE Commun Mag 54(2):78–85

    Article  Google Scholar 

  5. Sun L, Ren P, Du Q et al (2016) Fountain-coding aided strategy for Secure cooperative transmission in industrial. Wirel Sens Netw 12(1):291–300

    Google Scholar 

  6. Liu X, Dong M, Ota K, Hung P, Liu A (2016) Service pricing decision in cyber-physical systems: insights from game theory. IEEE Trans Serv Comput 9(2):186–198

    Article  Google Scholar 

  7. He S, Shin D, Zhang J et al (2016) Full-view area coverage in camera sensor networks: dimension reduction and near-optimal solutions. IEEE Trans Veh Technol 65(9):7448–7461

    Article  Google Scholar 

  8. Xu Q, Su Z, Guo S (2016) A game theoretical incentive scheme for relay selection services in mobile social networks. IEEE Trans Veh Technol 65(8):6692–6702

    Article  Google Scholar 

  9. Su Z, Xu Q, Fei M, Dong M (2016) Game theoretic resource allocation in media cloud with mobile social users. IEEE Trans Multimedia 18(8):1650–1660

    Article  Google Scholar 

  10. Li H, Liu D, Dai Y, Luan T (2015) Engineering searchable encryption of mobile cloud networks: when qoe meets qop. IEEE Wirel Commun 22(4):74–80

    Article  Google Scholar 

  11. Liu Y, Dong M, Ota K, Liu A (2016) ActiveTrust: Secure and trustable routing in wireless sensor networks. IEEE Trans Inf Forensics Secur 11:2013–2027

    Article  Google Scholar 

  12. Li H, Yang Y, Luan T, Liang X, Zhou L, Shen X (2016) Enabling fine-grained multi-keyword search supporting classified sub-dictionaries over encrypted cloud data. IEEE Trans Dependable Secure Comput 13(3):312–325

    Article  Google Scholar 

  13. He S, Chen J, Li X et al (2014) Mobility and intruder prior information improving the barrier coverage of sparse sensor networks. IEEE Trans Mob Comput 13(6):1268–1282

    Article  Google Scholar 

  14. Wieselthier JE, Nguyen GD, Ephremides A. On the construction of energy-efficient broadcast and multicast trees in wireless networks. // INFOCOM 2000. Nineteenth Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE. 2000:72–75

  15. Das AK, Marks RJ, El-Sharkawi M et al (2003) R-Shrink: A heuristic for improving minimum power broadcast trees in wireless networks. In: Proc. of the IEEE GLOBECOM. Piscataway: IEEE Press, 2004:523–527.

  16. Zhao D, Chin KW, Raad R (2014) Approximation algorithms for broadcasting in duty cycled wireless sensor networks. Wirel Netw 20(8):2219–2236

    Article  Google Scholar 

  17. Liu A, Jin X, Cui G et al (2013) Deployment guidelines for achieving maximum lifetime and avoiding energy holes in sensor network. Inf Sci 230:197–226

    Article  Google Scholar 

  18. Zhao S, Liu A (2017) High performance target tracking scheme with low prediction precision requirement in WSNs, International Journal of Ad Hoc and Ubiquitous Computing, http://www.inderscience.com/info/ingeneral/forthcoming.php?jcode=ijahuc

  19. Liao X, Guo R, Yu D, Jin H, Lin L (2016) A phase behavior aware dynamic cache partitioning scheme for CMPs. Int J Parallel Prog 44(1):68–86

    Article  Google Scholar 

  20. Long J, Dong M, Ota K, Liu A (2015) Green TDMA scheduling algorithm for prolonging lifetime in wireless sensor networks. IEEE Syst J. doi:10.1109/JSYST.2015.2448355

  21. Le Duc T, Le DT, Zalyubovskiy VV et al (2016) Level-based approach for minimum-transmission broadcast in duty-cycled wireless sensor networks. Pervasive Mob Comput 27:116–132

    Article  Google Scholar 

  22. Khiati M, Djenouri D (2013) BOD-LEACH: broadcasting over duty-cycled radio using LEACH clustering for delay/power efficient dissimilation in wireless sensor networks. Int J Commun Syst 28(2):296–308

    Article  Google Scholar 

  23. Gu L, Zeng D, Guo S, Xiang Y, Hu J (2016) A general communication cost optimization framework for big data stream processing in geo-distributed data centers. IEEE Trans Comput 65(1):19–29

    Article  MathSciNet  MATH  Google Scholar 

  24. Li H, Lin X, Yang H, Liang X, Lu R, Shen X (2014) EPPDR: an efficient privacy-preserving demand response scheme with adaptive key evolution in smart grid. IEEE Trans Parallel Distrib Syst 25(8):2053–2064

    Article  Google Scholar 

  25. Z. Chen, A. Liu, Z. Li, et al (2017) Energy-efficient Broadcasting Scheme for Smart Industrial Wireless Sensor Networks, Mobile Information Systems, doi:10.1155/2017/7538190.

  26. Wang K, Du M, Yang D, Zhu C, Shen J et al (2016) Game-theory-based active defense for intrusion detection in cyber-physical Embedded systems. ACM Trans Embed Comput Syst 16(1):18

    Article  Google Scholar 

  27. Chen Z, Liu A, Li Z, Choi YJ, Li J (2017) Distributed duty cycle control for delay improvement in wireless sensor networks. Peer-to-Peer Networking and Applications 10(3):559–578

    Article  Google Scholar 

  28. Liu X, Liu A, Huang C (2017) Adaptive information dissemination control to provide Diffdelay for internet of things. Sensors 17(1):138. doi:10.3390/s17010138

    Article  Google Scholar 

  29. Deng X, Peng Q, He L, He T (2016) Interference-aware QoS routing for neighborhood area network in smart grid. IET Commun. doi:10.1049/iet-com.2016.0860

  30. Duan X, Zhao C, He S, Cheng P, Zhang J (2016) Distributed algorithms to compute Walrasian equilibrium in mobile Crowdsensing. IEEE Trans Ind Electron. doi:10.1109/TIE.2016.2645138

  31. Deng X, Li G, Dong M, Ota K (2017) Finding overlapping communities based on Markov chain and link clustering. Peer-to-Peer Networking and Applications 10(2):411–420

    Article  Google Scholar 

  32. Liao X, Jin H, Yu S et al (2015) A novel memory allocation scheme for memory energy reduction in virtualization environment. J Comput Syst Sci 81(1):3–15

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang K, Shao Y, Shu L et al (2016) Mobile big data fault-tolerant processing for ehealth networks. IEEE Netw 30(1):36–42

    Article  Google Scholar 

  34. Liu X, Liu A, Deng Q, Liu H (2017) Large-scale programing code dissemination for software defined wireless networks. Comput J. doi:10.1093/comjnl/bxx014

  35. Zeng D, Li P, Guo S, Miyazaki T et al (2015) Energy Minimization in multi-task software-defined sensor networks. IEEE Trans Computers 64(11):3128–3139

    Article  MathSciNet  MATH  Google Scholar 

  36. Deng X, He L, Li X, Liu Q, Cai L, Chen Z (2016) A reliable QoS aware routing scheme for neighbor area nework in smart grid. Peer-to-Peer Networking and Applications 9(4):616–627

    Article  Google Scholar 

  37. OMNet++ Network Simulation Framework, http://www.omnetpp.org/

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (61379110, 61073104, 61379115, 61311140261, 61572528, 61272494, 61572528), the National Basic Research Program of China (973 Program) (2014CB046305) and Central South University undergraduate free exploration project (201510533283).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anfeng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Li, G., Zhang, S. et al. Big program code dissemination scheme for emergency software-define wireless sensor networks. Peer-to-Peer Netw. Appl. 11, 1038–1059 (2018). https://doi.org/10.1007/s12083-017-0565-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12083-017-0565-5

Keywords

Navigation