Skip to main content

Advertisement

Log in

Dynamic power allocation based on second-order control system in two-tier femtocell networks

  • Published:
Peer-to-Peer Networking and Applications Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper, we investigate the joint uplink power allocation problem for the macrocell and femtocells in the new view of Control Theory. Since the wireless channels in the macrocell and the femtocells fluctuate with time, we aim at an energy-saving and adaptive power allocation scheme that is robust to channel fluctuations. An optimal power allocation problem, which can satisfy the requirement of signal-to-interference-plus-noise ratio and subject to the maximum power constraint, is formulated. To obtain the robust power allocation of each user (both macrocell and femtocell users), a second-order control system is created for each cell (macrocell and femtocell). According to the second-order control system and considering the maximum power constraint, we derive a distributed robust power control algorithm. The dynamic performance and convergence of the formulated system are analyzed based on control theory. The advantage of the scheme is that some dynamic control indexes can be set in advance and the dynamic process can be controlled by setting appropriate parameters. Since femtocells share the same spectrum with the macrocell, the interference from femtocells to the macrocell base station has to be controlled to protect the normal communication of the macrocell. Then an admission control algorithm is proposed to remove the user that causes the serious interference to the macrocell, if the signal-to-interference-plus-noise ratio requirement of the macrocell user can not be satisfied. Two algorithms are particularly attractive, especially in view of practical implementation issues. Numerical simulation results are presented to illustrate the effectiveness and advantages of the proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Zhang J, Roche GDL (2009) Femtocells: Technologies and deployment. Wiley, Hoboken

    Google Scholar 

  2. Patel C, Yavuz M, Nanda S (2010) Femtocells [industry perspectives]. IEEE Wireless Commun 17(5):6–7

    Article  Google Scholar 

  3. Chandrasekhar V, Andrews JG (2009) Uplink capacity and interference avoidance for two-tier femtocell networks. IEEE Trans Wireless Commun 8(7):3498–3509

    Article  Google Scholar 

  4. Roche G, Valcarce A, Lopez-Perez D, Zhang J (2010) Access control mechanisms for femtocells. IEEE Commun Mag 48(1):33–39

    Article  Google Scholar 

  5. Liu Z, Wang J, Xia Y, Fan R, Jiang H, Yang H (2016) Power allocation robust to time-varyingwireless channels in femtocell networks. IEEE Transactions on Vehicaular Technology 65(4):2806–2815

    Article  Google Scholar 

  6. Ismail S, Ng CK, Noordin NK, Sali A, Ali BM (2011) Review of interference avoidance schemes in femtocell networks. Sci Res Essays 6(15):3261–3271

    Google Scholar 

  7. Han Q, Ma K, Liu Z, Guan X (2013) Power control based on maximum power adaptation in two-tier femtocell networks. Wireless Pers Commun 70(1):331–351

    Article  Google Scholar 

  8. Chandrasekhar V, Andrews JG, Muharemovict T, Shen Z, Gatherer A (2009) Power control in two-tier femtocell networks. IEEE Trans Wireless Commun 8(8):4316–4328

    Article  Google Scholar 

  9. He S, Chen J, Li X, Shen X, Sun Y (2014) Mobility and intruder prior information improving the barrier coverage of sparse sensor networks. IEEE Trans Mob Comput 13(6):1268–1282

    Article  Google Scholar 

  10. Ngo DT, Le LB, Le-Ngoc T (2012) Distributed Pareto-optimal power control for utility maximization in femtocell networks. IEEE Trans Wireless Commun 11(10):3434–3446

    Article  Google Scholar 

  11. Mohanmad RM, Khairi AH, Farokh M, Mehdi B (2016) Jonit optimization for optimal power allocation in OFDMA femtocell networks. IEEE Commun Lett 20(1):133–136

    Article  Google Scholar 

  12. Ngo DT, Le LB, Le-Ngoc T, Hossain E, Kim DI (2011) Distributed interference management in femtocell networks. In: Proc. IEEE Veh. tech. conf. San Francisco, pp 1–5

  13. Li X, Qian L, Kataria D (2009) Downlink power control in co-channel macrocell femtocell overlay. In: Proc. IEEE CISS 2009. 43rd annual conf. infor. sci. and sys. Baltimore, pp 383–388

  14. Claussen H, Ho LTW, Samuel LG (2008) Self-optimization of coverage for femtocell deployments. In: Proc. of the wireless telecommun. Symposium (WTS). Pomona, pp 278–285

  15. Jo H-S, Mun C, Moon J, Yook J-G (2009) Interference mitigation using uplink power control for two-tier femtocell networks. IEEE Trans Wireless Commun 8(10):4906–4910

    Article  Google Scholar 

  16. Lu Z, Sun Y, Wen X, Su T, Ling D (2012) An energy-efficient power control algorithm in femtocell networks. In: Proc. (ICCSE) 2012 7th inter. conf. computer sci. and edu. Melbourne, pp 395–400

  17. Beyer H-G, Sendhoff B (2007) Robust optimization-a comprehensive survey. SciVerse Comput Methods Appl Mech Eng 196(33-44):3190–3218

    Article  MathSciNet  MATH  Google Scholar 

  18. Gershman AB, Sidiropoulos ND (2005) Space-time processing for MIMO communications. Wiley, Hoboken

    Book  Google Scholar 

  19. Zhang X, Palomar DP, Ottersten B (2008) Statistically robust design of linear MIMO transceivers. IEEE Trans Signal Process 56(8):3678–3689

    Article  MathSciNet  Google Scholar 

  20. Zhou S, Giannakis GB (2002) Optimal transmitter eigen-beamforming and space-time block coding based on channel mean feedback. IEEE Trans Signal Process 50(10):2599–2613

    Article  Google Scholar 

  21. Zheng G, Ma S, Wong KK, Ng TS (2010) Robust beamforming in cognitive radio. IEEE Trans Wireless Commun 9(2):570–576

    Article  Google Scholar 

  22. Wang J, Scutari G, Palomar DP (2011) Robust MIMO cognitive radio via game theory[J]. IEEE Trans Signal Process 59(3):1183–1201

    Article  MathSciNet  Google Scholar 

  23. Chen D, Hu Y, Wang L, Zomaya A, Li X (2017) H-PARAFAC: Hierarchical parallel factor analysis of multidimensional big data. IEEE Trans Parallel Distrib Syst 28(4):1091–1104

    Article  Google Scholar 

  24. Kim DI, Le LB, Hossain E (2008) Joint rate and power allocation for cognitive radios in dynamic spectrum access environment. IEEE Trans Wireless Commun 7(12):5517–5527

    Article  Google Scholar 

  25. Le LB, Niyato D, Hossain E, Kim DI, Hoang DT (2013) QoS-aware and energy-efficient resource management in OFDMA Femtocells. IEEE Trans Wireless Commun 12(1):180–194

    Article  Google Scholar 

  26. Parsaeefard S, Sharafat AR, Rasti M (2010) Robust probabilistic distributed power allocation by chance constraint approach. In: IEEE 21st International symposium on personal indoor and mobile radio communications (PIMRC). Istanbul, pp 2162–2167

  27. Parsaeefard S, Sharafat A-R (2012) Robust worst-case interference control in underlay cognitive radio networks. IEEE Trans Veh Technol 61(8):3731–3745

    Article  Google Scholar 

  28. Zhang H, Cheng P, Shi L, Chen J (2016) Optimal DoS attack scheduling in wireless networked control system. IEEE Trans Control Syst Technol 24(3):843–852

    Article  Google Scholar 

  29. Dullerud GE, Paganini F (2000) A course in robust control theory. Springer, New York

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work is partly supported by National Natural Science Foundation of China under grant 61473247,61571387 and the Natural Science Foundation of Hebei Province under grant F2017203140, F2017203084.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhixin Liu.

Appendices

Appendix A

From (8), it can be known that

$$\begin{array}{@{}rcl@{}} C(s)=\frac{\omega_n^2}{s^2 + 2\zeta\omega_n s+\omega_n^2}\cdot{R(s)} \end{array} $$
(26)

Owing to r(t) is a step signal (r(t) = A, A is a positive constant), R(s) can be expressed as \(\frac {A}{s}\). Formula (26) can be rewritten as

$$\begin{array}{@{}rcl@{}} C(s)&=&\frac{\omega_n^2}{s^2 + 2\zeta\omega_n s+\omega_n^2}\cdot\frac{A}{s}\\ &=&\frac{A}{s}-A\frac{s + 2\zeta \omega_n}{(s+\zeta \omega_n+j\omega_d)(s+\zeta \omega_n-j\omega_d)}\\ & =&A\left[\frac{1}{s}-\frac{s+\zeta \omega_n}{(s+\zeta \omega_n)^2+\omega_d^2}-\frac{\zeta \omega_n}{\omega_d}\cdot\frac{\omega_d}{(s+\zeta \omega_n)^2+\omega_d^2}\right] \end{array} $$
(27)

where \(\omega _d=\omega _n\sqrt {1-\zeta ^2}\). Applying inverse Laplace transform into formula (27), we get

$$\begin{array}{@{}rcl@{}} c(t)=A&-&A\cdot \exp(-\zeta \omega_n t)\cos\omega_d t\\ &-&A\frac{\zeta}{\sqrt{1-\zeta^2}}\cdot \exp(-\zeta \omega_n t)\sin\omega_d t \end{array} $$
(28)

where \(\exp (-\zeta \omega _n t)\cos \omega _d t=L^{-1}\left (\frac {s+\zeta \omega _n}{(s+\zeta \omega _n)^2+\omega _d^2}\right )\) and \(\exp (-\zeta \omega _n t)\sin \omega _d t=L^{-1}\left (\frac {\omega _d}{(s+\zeta \omega _n)^2+\omega _d^2}\right )\). Organizing formula (28), we obtain

$$\begin{array}{@{}rcl@{}} c(t)&\,=\,&A\,-\,A\cdot \exp(-\zeta \omega_n t)\left( \!\cos\omega_d t\!-\frac{\zeta}{\!\sqrt{1-\!\zeta^2}}\cdot \sin\omega_d t\!\right)\\ &=&A-A\frac{\exp(-\zeta \omega_n t)}{\sqrt{1-\zeta^2}}\sin (\omega_d t+\varphi) \end{array} $$
(29)

where \(\varphi =\arctan \frac {\sqrt {1-\zeta ^2}}{\zeta }\). Taking the time derivative on (29), we get

$$\begin{array}{@{}rcl@{}} && \frac{dc(t)}{dt}=A\zeta \omega_n \frac{\exp(-\zeta \omega_n t)}{\sqrt{1-\zeta^2}}\sin (\omega_d t+\varphi)\\ &&\hspace{0.5cm}-A\omega_d \frac{\exp(-\zeta \omega_n t)}{\sqrt{1-\zeta^2}}\cos(\omega_d t+\varphi) \end{array} $$
(30)

Let \(\frac {dc(t)}{dt}= 0\), and the following formula holds

$$\begin{array}{@{}rcl@{}} \sin (\omega_d t+\varphi)=\frac{{\sqrt{1-\zeta^2}}}{\zeta}\cos(\omega_d t+\varphi) \end{array} $$
(31)

namely

$$\begin{array}{@{}rcl@{}} \tan (\omega_d t+\varphi)=\tan (\varphi) \end{array} $$
(32)

then, we know that ω d t = 0,π, 2π,⋯ Since the peak time is the time that c(t) reaches the first peak, then ω d t p = π, i.e.,

$$\begin{array}{@{}rcl@{}} t_p=\frac{\pi}{\omega_d}=\frac{\pi}{\omega_n \sqrt{1-\zeta^2}} \end{array} $$

From formula (29), we can get \(A\pm A\frac {\exp (-\zeta \omega _n t)}{\sqrt {1-\zeta ^2}}\) is the envelope equation. Then we learn that

$$\begin{array}{@{}rcl@{}} 1+\frac{\exp(-\zeta \omega_n t_s)}{\sqrt{1-\zeta^2}}= 1+{\Delta} \end{array} $$

then

$$\begin{array}{@{}rcl@{}} \exp(-\zeta \omega_n t_s)={\Delta}{\sqrt{1-\zeta^2}} \end{array} $$
(33)

According to (33), it is clear that the following formula holds

$$\begin{array}{@{}rcl@{}} -\zeta \omega_n t_s=\ln\left( {\Delta}{\sqrt{1-\zeta^2}}\right) \end{array} $$
(34)

Owing to \(\sqrt {1-\zeta ^2}\approx 1\), t s can be expressed as

$$\begin{array}{@{}rcl@{}} t_s=\frac{-\ln {\Delta}}{\zeta \omega_n} \end{array} $$

Appendix B

On the basis of differential properties of Laplace transform, we can obtain the following formula

$$\begin{array}{@{}rcl@{}} \mathscr{L}\left[\frac{d}{dt}e(t)\right]={\int}_0^{\infty}\frac{d}{dt}e(t)\cdot e^{-st}dt=sE(s)-e(0) \end{array} $$
(35)

Taking limit of the two sides of (35), the following formula sets up

$$\begin{array}{@{}rcl@{}} \lim\limits_{s\rightarrow 0}{\int}_0^{\infty}\frac{d}{dt}e(t)\cdot e^{-st}dt=\lim\limits_{s\rightarrow 0}(sE(s)-e(0)) \end{array} $$
(36)

Since

$$\begin{array}{@{}rcl@{}} \lim\limits_{s\rightarrow 0}{\int}_0^{\infty}\frac{d}{dt}e(t)\cdot e^{-st}dt&=&{\int}_0^{\infty}\frac{d}{dt}e(t)\lim_{s\rightarrow 0}e^{-st}dt\\ &=&{\int}_0^{\infty}de(t)=\lim\limits_{t\rightarrow \infty}{\int}_0^{t}de(t)\\ &=&\lim\limits_{t\rightarrow \infty}\left[e(t)-e(0)\right] \end{array} $$
(37)

we get

$$\begin{array}{@{}rcl@{}} \lim\limits_{t\rightarrow \infty}\left[e(t)-e(0)\right]=\lim\limits_{s\rightarrow 0}(sE(s)-e(0)) \end{array} $$
(38)

It is clear that

$$\begin{array}{@{}rcl@{}} \lim\limits_{t\rightarrow \infty}e(t)=\lim_{s\rightarrow 0}sE(s) \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Y., Liu, Z., Wang, J. et al. Dynamic power allocation based on second-order control system in two-tier femtocell networks. Peer-to-Peer Netw. Appl. 11, 940–954 (2018). https://doi.org/10.1007/s12083-017-0610-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12083-017-0610-4

Keywords

Navigation