Skip to main content
Log in

Hybrid-triggered state feedback H control for networked control systems with stochastic nonlinearity and quantization

  • Published:
Peer-to-Peer Networking and Applications Aims and scope Submit manuscript

Abstract

This paper is concerned with the state feedback H control problem for hybrid-triggered networked control systems (NCSs) with stochastic nonlinearity and state quantization. In order to establish a higher utilization of the network resources, a hybrid-triggered transmission scheme (HTTS) and measurement size reduction scheme are introduced. Firstly, the HTTS is presented such that the signal can be transmitted according to the law. Then the measurement size reduction scheme, i.e., the logarithmic quantization is applied. Then, considering the effect of HTTS and quantization, the original NCSs model is reformulated as a new hybrid-triggered NCSs with communication delay. By using Lyapunov functional method and linear matrix inequality technique, sufficient conditions for stochastical stability with a prescribed H performance level are established, and the design of controller and trigger parameters can be obtained. Finally, a simulation example is given to illustrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Costa J, Leao CP, Soares FO, Machado J (2010) Industrial network platform for monitoring and control of automated manufacturing systems. IFAC Proc Vol 43(4):168–173

    Article  Google Scholar 

  2. Pham CV, Wang YN (2015) Robust adaptive trajectory tracking sliding mode control based on neural networks for cleaning and detecting robot manipulators. J Intell Robot Syst 79(1):101–114

    Article  Google Scholar 

  3. Duan X, Zhao C, He S, Cheng P, Zhang J (2017) Distributed algorithms to compute Walrasian equilibrium in mobile crowdsensing. IEEE Trans Ind Electron 64(5):4048–4057

    Article  Google Scholar 

  4. Yang G, He S, Shi Z, Chen J (2017) Promoting cooperation by the social incentive mechanism in mobile crowdsensing. IEEE Commun Mag 55(3):86–92

    Article  Google Scholar 

  5. Yang H, Shi P, Zhang J, Qiu J (2012) Robust H control for a class of discrete time fuzzy systems via delta operator approach. Inf Sci Int J 184(1):230–245

    MathSciNet  MATH  Google Scholar 

  6. Zhang W, Chen B (2006) State feedback H control for a class of nonlinear stochastic systems. Siam J Control Optim 44(6):1973–1991

    Article  MathSciNet  MATH  Google Scholar 

  7. Kau S, Lee H, Yang C, Lee C, Hong L, Fang C (2007) Robust H fuzzy static output feedback control of T-S fuzzy systems with parametric uncertainties. Fuzzy Set Syst 158 (2):135–146

    Article  MathSciNet  MATH  Google Scholar 

  8. Cloosterman MM, Wouw VDNN, Heemels WPMH, Nijmeijer HH (2009) Stability of networked control systems with uncertain time-varying delays. IEEE Trans Autom Control 54(7):1575– 1580

    Article  MathSciNet  MATH  Google Scholar 

  9. Hespanha JP, Naghshtabrizi P, Xu Y (2007) A survey of recent results in networked control systems. Proc IEEE 95(1):138–162

    Article  Google Scholar 

  10. Peng C, Tian Y, Yue D (2011) Output feedback control of discrete-time systems in networked environments. IEEE Trans Syst Man Cybern-Part Syst Humans 41(1):185–190

    Article  Google Scholar 

  11. Li H, Yang H, Sun F, Xia Y (2014) Sliding-mode predictive control of networked control systems under a multiple-packet transmission policy. IEEE Trans Ind Electron 61(11):6234– 6243

    Article  Google Scholar 

  12. Selivanov A, Fridman E (2016) Observer-based input-to-state stabilization of networked control systems with large uncertain delays. Automatica 74:63–70

    Article  MathSciNet  MATH  Google Scholar 

  13. Rasool F, Huang D, Nguang SK (2011) Robust H output feedback control of discrete-time networked systems with limited information. Syst Control Lett 60 (10):845–853

    Article  MathSciNet  MATH  Google Scholar 

  14. Peng C, Fei MR, Tian E, Guan YP (2014) On hold or drop out-of-order packets in networked control systems. Inform Sci 268:436–446

    Article  MathSciNet  MATH  Google Scholar 

  15. Tan C, Li L, Zhang H (2015) Stabilization of networked control systems with both network-induced delay and packet dropout. Automatica 59:194–199

    Article  MathSciNet  MATH  Google Scholar 

  16. Su L, Chesi G (2017) Robust stability analysis and synthesis for uncertain discrete-time networked control systems over fading channels. IEEE Trans Autom Control 62(4):1966–1971

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhang H, Zhang Z, Wang Z, Shan Q (2016) New results on stability and stabilization of networked control systems with short time-varying delay. IEEE Trans Syst Man Cybern 46(12):2772–2781

    Google Scholar 

  18. Yang G, He S, Shi Z (2017) Leveraging crowdsourcing for efficient malicious users detection in large-scale social networks. IEEE Internet Things J 4(2):330–339

    Article  Google Scholar 

  19. Zhang H, Qi Y, Zhou H, Zhang J, Sun J (2017) Testing and defending methods against dos attack in state estimation. Asian J Control 19(4):1295–1305

    Article  MathSciNet  MATH  Google Scholar 

  20. Tian E, Yue D, Peng C (2008) Quantized output feedback control for networked control systems. Inform Sci 178(12):2734–2749

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhai G, Chen N, Gui W (2010) Quantizer design for interconnected feedback control systems. Control Theory Technol 8(1):93–98

    Article  MathSciNet  Google Scholar 

  22. Zhang C, Feng G, Gao H, Qiu J (2011) H filtering for nonlinear discrete-time systems subject to quantization and packet dropouts. IEEE Trans Fuzzy Syst 19(2):353–365

    Article  Google Scholar 

  23. Lu R, Wu H, Bai J (2014) Networked H filtering for T-S fuzzy systems with quantization and data dropouts. J Franklin Inst 351(6):3126–3144

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu K, Fridman E, Johansson KH (2015) Dynamic quantization of uncertain linear networked control systems. Automatica 59:248–255

    Article  MathSciNet  MATH  Google Scholar 

  25. Shi Y, Fang H (2010) Kalman filter-based identification for systems with randomly missing measurements in a network environment. Int J Control 83(3):538–551

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang X, Han Q (2015) Event-based H filtering for sampled-data systems. Automatica 51:55–69

    Article  MathSciNet  MATH  Google Scholar 

  27. Lemmon M (2010) Event-triggered feedback in control, estimation, and optimization. Lect Notes Control Inf Sci 406:293– 358

    MathSciNet  MATH  Google Scholar 

  28. Yan H, Yan S, Zhang H, Shi H (2014) Event-triggered control for networked control systems with time-varying delay. Math Probl Eng 2014:1–7

    MathSciNet  MATH  Google Scholar 

  29. Li H, Shi Y (2014) Event-triggered robust model predictive control of continuous-time nonlinear systems. Automatica 50(5):1507–1513

    Article  MathSciNet  MATH  Google Scholar 

  30. Vamvoudakis KG, Mojoodi A, Ferraz H (2017) Event-triggered optimal tracking control of nonlinear systems. Int J Robust Nonlinear Control 27(4):598–619

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang D, Nguang SK, Srinivasan D, Yu L (2017) Distributed filtering for discrete-time T-S fuzzy systems with incomplete measurements. IEEE Transactions on Fuzzy Systems, https://doi.org/10.1109/TFUZZ.2017.2725228 https://doi.org/10.1109/TFUZZ.2017.2725228

  32. Hu S, Yue D (2012) Event-triggered control design of linear networked systems with quantizations. ISA Trans 51(1):153–162

    Article  Google Scholar 

  33. Yue D, Tian E, Han Q (2013) A delay system method for designing event-triggered controllers of networked control systems. IEEE Trans Autom Control 58(2):475–481

    Article  MathSciNet  MATH  Google Scholar 

  34. Li H, Chen Z, Wu L, Lam H, Du H (2017) Event-triggered fault detection of nonlinear networked systems. IEEE Trans Syst Man Cybern 47(4):1041–1052

    Google Scholar 

  35. Zhang D, Wang QG, Srinivasan D, Li H, Li Y (2018) Asynchronous state estimation for discrete-time switched complex networks with communication constraints. IEEE Trans Neural Netw Learn Syst 29(5):1732–1746

    Article  MathSciNet  Google Scholar 

  36. Zhang D, Xu Z, Karimi HR, Wang QG, Yu L (2018) Distributed H output-feedback control for consensus of heterogeneous linear multi-agent systems with aperiodic sampled-data communications. IEEE Trans Ind Electron 65(6):4145– 4155

    Article  Google Scholar 

  37. Liu J, Zha L, Cao J, Fei S (2016) Hybrid-driven-based stabilisation for networked control systems. IET Control Theory Appl 10(17):2279–2285

    Article  MathSciNet  Google Scholar 

  38. Zha L, Fang JA, Liu J, Tian E (2017) Reliable control for hybrid-driven T-S fuzzy systems with actuator faults and probabilistic nonlinear perturbations. J Franklin Inst 354(8):3267–3288

    Article  MathSciNet  MATH  Google Scholar 

  39. Xu W, Yu H, Lu D, Liu F, Liu Z (2018) A novel data reuse method to reduce demand on memory bandwidth and power consumption for true motion estimation. IEEE Access 6:2279–2285

    Article  Google Scholar 

  40. Guo P, Zhang H, Alsaadi FE, Hayat T (2017) Semi-tensor product method to a class of event-triggered control for finite evolutionary networked games. IET Control Theory Appl 11(13):2140–2145

    Article  MathSciNet  Google Scholar 

  41. Tian E, Yue D (2015) Decentralized control of network-based interconnected systems: a state-dependent triggering method. Int J Robust Nonlinear Control 25(8):1126–1144

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang X, Lemmon MD (2009) Self-triggered feedback control systems with finite-gain \(\mathcal {L}_{2}\) stability. IEEE Trans Autom Control 54(3):452–467

    Article  MathSciNet  MATH  Google Scholar 

  43. Liu J, Yue D (2013) Event-triggering in networked systems with probabilistic sensor and actuator faults. Inform Sci 240(10):145–160

    Article  MathSciNet  MATH  Google Scholar 

  44. Fu M, Xie L (2005) The sector bound approach to quantized feedback control. IEEE Trans Autom Control 50(11):1698–1711

    Article  MathSciNet  MATH  Google Scholar 

  45. Mao X (1996) Robustness of exponential stability of stochastic differential delay equations. IEEE Trans Autom Control 41(3):442–447

    Article  MathSciNet  MATH  Google Scholar 

  46. Peng C, Tian Y (2008) Delay-dependent robust stability criteria for uncertain systems with interval time-varying delay. J Comput Appl Math 214(2):480–494

    Article  MathSciNet  MATH  Google Scholar 

  47. Huang H, Ho DWC (2007) Delay-dependent robust control of uncertain stochastic fuzzy systems with time-varying delay. IET Control Theory Appl 1(4):1075–1085

    Article  MathSciNet  Google Scholar 

  48. Cao YY, Sun YX, Lam J (1998) Delay-dependent robust H control for uncertain systems with time-varying delays. IEE Proc-Control Theory Appl 145(3):338–344

    Article  Google Scholar 

  49. Yue D, Tian E, Zhang Y, Peng C (2009) Delay-distribution-dependent stability and stabilization of T-S fuzzy systems with probabilistic interval delay. IEEE Trans Syst Man Cybern 39(2):503–516

    Article  Google Scholar 

  50. Ge X, Han Q (2015) Distributed event-triggered H filtering over sensor networks with communication delays. Inform Sci 291:128–142

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is partly supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 15KJB120002) and Fund of Nanjing University of Finance and Economics (No. KYC201602), the National Natural Science Foundation of China (No. 71571092), the Natural Science Foundation of Jiangsu Province of China (No. BK20171481).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yushun Tan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection: Special Issue on Network Coverage

Guest Editors: Shibo He, Dong-Hoon Shin, and Yuanchao Shu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Y., Xiong, M., Du, D. et al. Hybrid-triggered state feedback H control for networked control systems with stochastic nonlinearity and quantization. Peer-to-Peer Netw. Appl. 12, 660–676 (2019). https://doi.org/10.1007/s12083-018-0671-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12083-018-0671-z

Keywords

Navigation