Skip to main content
Log in

Centrality prediction based on K-order Markov chain in Mobile Social Networks

  • Published:
Peer-to-Peer Networking and Applications Aims and scope Submit manuscript

Abstract

In this paper, we proposed a centrality prediction method based on K-order Markov chains to solve the problem of centrality prediction in Mobile Social Networks (MSNs). First, we use the information entropy to analyze the past and future regularity of the nodes’ centrality in the real mobility traces, and verify that nodes’ centrality is predictable. Then, using the historical information of the center of the node, the state probability matrix is constructed to predict the future central value of the node. At last, through the analysis of the error between real value and predicted value, we evaluate the performance of the proposed prediction methods. The results show that, when the order number is K = 2, compared with other existing four time-order-based centrality prediction methods, the proposed centrality prediction method based on K-order Markov chain performs much better, not only in the MIT Reality trace, but also in the Infocom 06 traces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xiao M, Wu J, Huang L (2014) Community-aware opportunistic routing in mobile social networks. IEEE Trans Comput 63(7):1682–1695

    Article  MathSciNet  MATH  Google Scholar 

  2. Zhou H, Chen J, Fan J, Du Y, Das SK (2013) Consub: Incentive-based content subscribing in selfish opportunistic mobile networks. IEEE J Sel Areas Commun 31(9):669–679

    Article  Google Scholar 

  3. Zhou H, Wang H, Li X, Leung VCM (2018) A survey on mobile data offloading technologies. IEEE Access 6(1):5101–5111

    Article  Google Scholar 

  4. Yang G, He S, Shi Z (2017) Leveraging crowdsourcing for efficient malicious users detection in large-scale social networks. IEEE Internet Things J 4(2):330–339

    Article  Google Scholar 

  5. Zhou H, Wu J, Zhao H, Tang S, Chen C, Chen J (2015) Incentive-driven and freshness-aware content dissemination in selfish opportunistic mobile networks. IEEE Trans Parallel Distrib Syst 26(9):2493–2505

    Article  Google Scholar 

  6. Yang G, He S, Shi Z, Chen J (2017) Promoting cooperation by social incentive mechanism in mobile crowdsensing. IEEE Commun Mag 55(3):86–92

    Article  Google Scholar 

  7. Zhou H, Leung VCM, Zhu C, Xu S, Fan J (2017) Predicting temporal social contact patterns for data forwarding in opportunistic mobile networks. IEEE Trans Veh Technol 66(11):10372–10383

    Article  Google Scholar 

  8. Zhu C, Leung VCM, Rodrigues JJPC, Shu L, Wang L, Zhou H (2018) Social sensor cloud: framework, greenness, issues, and outlook. IEEE Netw 32(5):100–105

    Article  Google Scholar 

  9. Zhu C, Zhou H, Leung VCM, Wang K, Zhang Y, Yang LT (2017) Toward big data in green city. IEEE Commun Mag 55(11):14–18

    Article  Google Scholar 

  10. Galton F (1886) Regression towards mediocrity in hereditary stature. J Anthropol Inst G B Irel 1(15):246–263

    Google Scholar 

  11. Zhou H, Chen J, Zhao H, Gao W, Cheng P (2013) On exploiting contact patterns for data forwarding in duty-cycle opportunistic mobile networks. IEEE Trans Veh Technol 62(9):4629–4642

    Article  Google Scholar 

  12. Yuan Q, Cardei I, Wu J (2009) Predict and relay: an efficient routing in disruption-tolerant networks. In: ACM interational symposium on mobile ad hoc networking and computing, MOBIHOC 2009, New Orleans, La, Usa, pp 95–104

  13. Chen H, Lou W (2014) Gar: group aware cooperative routing protocol for resource-constraint opportunistic networks. Comput Commun 48(18):20–29

    Article  Google Scholar 

  14. Zhou H, Ruan M, Zhu C, Leung VCM, Xu S, Huang C (2018) A time-ordered aggregation model-based centrality metric for mobile social networks. IEEE Access 6(1):25588–25599

    Article  Google Scholar 

  15. Huang C, Chen Y, Xu S, Zhou H (2018) The vehicular social network (vsn)-based sharing of downloaded geo data using the credit-based clustering scheme. IEEE Access 6(1):58254–58271

    Article  Google Scholar 

  16. Freeman LC (1978) Centrality in social networks conceptual clarification. Soc Networks 1(3):215–239

    Article  Google Scholar 

  17. Pan H, Chaintreau A, Scott J, Gass R, Crowcroft J (2005) C.diot, Pocket switched networks and human mobility in conference environments. In: Proceedings of the 2005 ACM SIGCOMM workshop on Delay-tolerant networking, pp 244–251

  18. Dong ZB, Song GJ, Xie KQ, Wang JY (2009) An experimental study of large-scale mobile social network. In: Proceedings of the 18th international conference on World Wide Web, pp 1175–1176

  19. Zhou H, Tong L, Xu S, Huang C, Fan J (2016) Predicting temporal centrality in opportunistic mobile social networks based on social behavior of people. Pers Ubiquit Comput 20(6):1–13

    Article  Google Scholar 

  20. Scott J (1988) Trend report social network analysis. Sociology 22(1):109–127

    Article  Google Scholar 

  21. Gao W, Li Q, Zhao B, Cao G (2009) Multicasting in delay tolerant networks: a social network perspective. In: Proceedings of the 10th ACM international symposium on Mobile ad hoc networking and computing, pp 299–308

  22. Wang S, Huang L, Hsu CH, Yang F (2016) Collaboration reputation for trustworthy web service selection in social networks. J Comput Syst Sci 82(1):130–143

    Article  MathSciNet  Google Scholar 

  23. Kim H, Tang J, Anderson R, Mascolo C (2012) Centrality prediction in dynamic human contact networks. Comput Netw 56(3):983–996

    Article  Google Scholar 

  24. Bartlett MS (1951) The frequency goodness of fit test for probability chains. Math Proc Camb Philos Soc 47 (1):86–95

    Article  MathSciNet  MATH  Google Scholar 

  25. Nguyen HA, Giordano S (2012) Context information prediction for social-based routing in opportunistic networks. Ad Hoc Netw 10(8):1557–1569

    Article  Google Scholar 

  26. Bulut E, Szymanski BK (2012) Exploiting friendship relations for efficient routing in mobile social networks, vol 23

    Article  Google Scholar 

  27. Zhou H, Wang H, Chen X, Li X, Xu S (2018) Data offloading techniques through vehicular ad hoc networks: a survey. IEEE Access 6(1):65250–65259

    Article  Google Scholar 

  28. Li F, Zhao L, Zhang C, Gao Z, Wang Y (2014) Routing with multi-level cross-community social groups in mobile opportunistic networks. Pers Ubiquit Comput 18(2):385–396

    Article  Google Scholar 

  29. Williams MJ, Whitaker RM, Allen SM (2012) Decentralised detection of periodic encounter communities in opportunistic networks. Ad Hoc Netw 10(8):1544–1556

    Article  Google Scholar 

  30. Hossmann T, Spyropoulos T, Legendre F (2011) A complex network analysis of human mobility. In: Proceedings of the IEEE Conference on Computer Communications Workshops(INFOCOM WKSHPS), pp 876–881

  31. Wang D, Pedreschi D, Song C (2011) Human mobility, social ties, and link prediction. In: ACM SIGKDD international conference on knowledge discovery and data mining, pp 1100–1108

  32. Daly E, Haahr M (2007) Social network analysis for routing in disconnected delay-tolerant manets. In: ACM Interational symposium on mobile Ad Hoc networking and computing, pp 32–40

  33. Kempe D, Kleinberg J, Kumar A (2002) Connectivity and inference problems for temporal networks. J Comput Syst Sci Int 64(4):820–842

    Article  MathSciNet  MATH  Google Scholar 

  34. Ferreira A (2004) Building a reference combinatorial model for manets. IEEE Netw 18(5):24–29

    Article  Google Scholar 

  35. Tang J, Musolesi M, Mascolo C, Latora V (2010) Characterising temporal distance and reachability in mobile and online social networks. ACM SIGCOMM Comput Commun Rev 40(1):118–124

    Article  Google Scholar 

  36. Tang J, Musolesi M, Mascolo C, Latora V, Nicosia V (2010) Analysing information flows and key mediators through temporal centrality metrics. In: Proceedings of the 3rd workshop on social network systems, pp 1–6

  37. Qin J, Zhu H, Zhu Y, Lu L, Xue G, Li M (2014) Post: Exploiting dynamic sociality for mobile advertising in vehicular networks. IEEE Trans Parallel Distrib Syst 27(6):1–1

    Google Scholar 

  38. Saruukkai R (2000) Ramesh link prediction and path analysis using Markov chains. Comput Netw 33(1):377–386

    Article  Google Scholar 

  39. Zhu Y, Zhong Z, Zheng WX, Zhou D (2018) Hmm-based h-infinity filtering for discrete-time Markov jump lpv systems over unreliable communication channels, IEEE Transactions on Systems. Man, and Cybernetics: Systems 48(12):2035–2046

    Google Scholar 

  40. Zhu Y, Zhang L, Zheng WX (2016) Distributed h-infinity filtering for a class of discrete-time Markov jump lur’ systems with redundant channels. IEEE Transactions on Industrial Electronics 63(3):1876–1885

    Article  Google Scholar 

  41. Zhang H, Qi Y, Zhou H, Zhang J, Sun J (2017) Testing and defending methods against dos attack in state estimation. Asian J Control 19(3):1–11

    MathSciNet  MATH  Google Scholar 

  42. Fei GL (2011) Unicast network loss tomography based on k-th order Markov chain. J Electron Inf Technol 33(9):2278–2282

    Article  Google Scholar 

  43. Burnham KP, Anderson DR (2004) Multimodel inference understanding aic and bic in model selection. Sociol Methods Res 33(33):261–304

    Article  MathSciNet  Google Scholar 

  44. Song L, Kotz D, Jain R, he X (2006) Evaluating next-cell predictors with extensive wi-fi mobility data. IEEE Trans Mob Comput 5(12):1633–1649

    Article  Google Scholar 

Download references

Funding

This work was supported in part by National Science Foundation of China under Grants No. 61872221, and 61602272.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan Zhou.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection: Special Issue on Networked Cyber-Physical Systems

Guest Editors: Heng Zhang, Mohammed Chadli, Zhiguo Shi, Yanzheng Zhu, and Zhaojian Li

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruan, M., Chen, X. & Zhou, H. Centrality prediction based on K-order Markov chain in Mobile Social Networks. Peer-to-Peer Netw. Appl. 12, 1662–1672 (2019). https://doi.org/10.1007/s12083-019-00746-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12083-019-00746-y

Keywords

Navigation