Skip to main content
Log in

Quasi-cyclic constructions of asymmetric quantum error-correcting codes

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

Asymmetric quantum error-correcting codes (AQECCs) are an extremely efficient coding scheme against the different occurring probabilities of qubit-flip and phase-shift errors in quantum asymmetric channel. It is generally known that good quantum codes play a decisive role in ensuring the reliability and the authenticity of quantum communication. In this paper, our main objective is to obtain good AQECCs from quasi-cyclic (QC) codes over small fields, which will effectively fill some gaps of the constructions of AQECCs. At first, a suitable family of r-generator QC codes is proposed and their parameters are determined. Moreover, we show that their dual codes are 1-generator QC codes. In particular, when r = 2 and 3, we embed these dual codes into 2-generator and 3-generator QC codes, and obtain two pairs of nested codes. Then two explicit constructions of AQECCs from QC codes are presented, respectively. As for computational results, many new binary and ternary AQECCs with good parameters are constructed, which all can not be deduced by the asymmetric quantum Gilbert-Varshamov (GV) bound in Matsumoto (Quantum Inf. Process. 16, 1–7, 2017).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aly, S. A., Klappenecker, A., Sarvepalli, P. K.: On quantum and classical BCH codes. IEEE Trans. Inf. Theory 53, 1183–1188 (2007)

    Article  MathSciNet  Google Scholar 

  2. Aly, S. A.: Asymmetric quantum BCH codes. In: Proceedings of IEEE International Conference on Computer Engineering and Systems (ICCES08), pp. 157–162 (2008)

  3. Ashikhmin, A., Knill, E.: Nonbinary quantum stabilizer codes. IEEE Trans. Inf. Theory 47(7), 3065–3072 (2001)

    Article  MathSciNet  Google Scholar 

  4. Ashraf, M., Mohammad, G.: Quantum codes over Fp from cyclic codes over Fp[u,v]/〈u2 − 1,v3v,uvvu〉. Cryptogr. Commun. 11, 325–335 (2019)

    Article  MathSciNet  Google Scholar 

  5. Aydin, N., Asamov, T.: Gulliver. In: Proc. 2007 IEEE ISIT, pp 856–860 (2007)

  6. Bosma, W., Cannon, J., Playoust, C.: The MAGMA algebra system I: the user language. J. Symb. Comput. 24, 235–265 (1997)

    Article  MathSciNet  Google Scholar 

  7. Calderbank, A. R., Rains, E. M., Shor, P. W., Sloane, N. J. A.: Quantum error correction via GF(4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998)

    Article  MathSciNet  Google Scholar 

  8. Camara, T., Ollivier, H., Tillich, J.P.: A class of quantum LDPC codes: construction and performances under iterative decoding. In: Proc. 2007 IEEE ISIT, pp 811–815 (2007)

  9. Chen, C. L.: Computer results on the minimum distance of some binary cyclic codes. IEEE Trans. Inf. Theory 16(3), 359–360 (1970)

    Article  Google Scholar 

  10. Chen, J., Li, J., Lin, J.: New optimal asymmetric quantum codes derived from negacyclic codes. Int. J. Theor. Phys. 53(1), 72–79 (2014)

    Article  MathSciNet  Google Scholar 

  11. Daskalov, R., Hristov, P.: New binary one-generator quasi-cyclic codes. IEEE Trans. Inf. Theory 49, 3001–3005 (2003)

    Article  MathSciNet  Google Scholar 

  12. Ezerman, M. F., Ling, S., Sole, P.: Additive asymmetric quantum codes. IEEE. Trans. Inf. Theory 57, 5536–5550 (2011)

    Article  MathSciNet  Google Scholar 

  13. Ezerman, M. F., Ling, S., Özkaya, B., Solé, P.: Good stabilizer codes from quasi-cyclic codes over \(\mathbb {F}_{4}\) and \(\mathbb {F}_{9}\). arXiv:1906.04964v1 (2019)

  14. Galindo, C., Hernando, F., Mastsumoto, R.: Quasi-cyclic constructions of quantum codes. Finite Fields Appl. 52, 261–280 (2018)

    Article  MathSciNet  Google Scholar 

  15. Grassl, M.: Codetables. electronic address: http://www.codetables.de/ (Accessed 10 Oct. 2020)

  16. Hagiwara, M., Kasai, K., Imai, H., Sakaniwa, K.: Spatially-coupled quasi-cyclic quantum LDPC codes. In: Proc. 2011 IEEE ISIT. Nice. France, pp 638–642 (2007)

  17. Ioffe, L., Mzard, M.: Asymmetric quantum error-correcting codes. Phys. Rev. A 75, 032345 (2007)

    Article  MathSciNet  Google Scholar 

  18. Iyer, P., Poulin, D.: Hardness of decoding quantum stabilizer codes. IEEE Trans. Inf. Theory 61(9), 5209–5223 (2013)

    Article  MathSciNet  Google Scholar 

  19. Kasami, T.: A Gilber-Vashamov bound for quasi-cyclic codes of rate \(\frac {1}{2}\). IEEE Trans. Inf. Theory 20, 679 (2008)

    Article  MathSciNet  Google Scholar 

  20. Ketkar, A., Klappenecker, A., Kumar, S.: Nonbinary stabilizier codes over finite fields. IEEE Trans. Inf. Theory 52, 4892–4914 (2006)

    Article  Google Scholar 

  21. Kuo, K. Y., Lu, C. C.: On the hardnesses of several quantum decoding problems. Quantum Inf. Process. 19(4) (2020)

  22. Kschischang, F. R., Pasupathy, S.: Some ternary and quaternary codes and associated sphere packings. IEEE Trans. Inf. Theory 38(2), 227–246 (1992)

    Article  MathSciNet  Google Scholar 

  23. La Guardia, G. G.: New families of asymmetric quantum BCH codes. Quantum Inf. Comput. 11, 239–252 (2011)

    MathSciNet  MATH  Google Scholar 

  24. La Guardia, G. G.: Asymmetric quantum Reed-Solomon and generalized Reed-Solomon codes. Quantum Inf. Process. 11, 591–604 (2012)

    Article  MathSciNet  Google Scholar 

  25. La Guardia, G. G.: Asymmetric quantum codes: new codes from old. Quantum Inf. Process. 12, 2771–2790 (2013)

    Article  MathSciNet  Google Scholar 

  26. Lally, K., Fitzpatrick, P.: Algebraic structure of quasicyclic codes. Discrete Appl. Math. 11, 157–175 (2001)

    Article  MathSciNet  Google Scholar 

  27. Li, R., Wang, J., Liu, Y., Guo, G.: New quantum constacyclic codes. Quantum Inf. Process. 18(1), 1–23 (2019)

    Article  MathSciNet  Google Scholar 

  28. Li, Y., Dumer, I., Grassl, M., Pryadko, L. P.: Clustered bounded-distance decoding of codeword-stabilized quantum codes. In: Proc. 2010 IEEE ISIT, pp 2662–2666 (2010)

  29. Ling, S., Solé, P.: On the algebraic structure of quasi-cyclic codes I: Finite fields. IEEE Trans. Inf. Theory 47(7), 2751–2760 (2001)

    Article  MathSciNet  Google Scholar 

  30. Liu, X., Dinh, H. Q., Liu, H.: Yu, Long.: On new quantum codes from matrix product codes. Cryptogr. Commun. 10, 579–589 (2018)

    Article  MathSciNet  Google Scholar 

  31. Lv, J., Li, R., Wang, J.: Quantum codes derived from one-generator quasi-cyclic codes with Hermitian inner product. Int. J. Theor. Phys. 102 (10), 1411–1415 (2019)

    Google Scholar 

  32. Lv, J., Li, R., Wang, J.: New binary quantum codes derived from one-generator quasi-cyclic codes. IEEE Access 7, 85782–85785 (2019)

    Article  Google Scholar 

  33. Lv, J., Li, R., Wang, J.: An expilict construction of quantum quantum stablizer codes from qausi-cyclic codes. IEEE Commun. Lett., 1–1 (2020)

  34. Matsumoto, R.: Two Gilbert-Varshamov-type existential bounds for asymmetric quantum error-correcting codes. Quantum Inf. Process. 16, 1–7 (2017)

    Article  MathSciNet  Google Scholar 

  35. Poulin, D., Chung, Y.: On the iterative decoding of sparse quantum codes. Quantum Inf. Comput. 8(10), 987–1000 (2008)

    MathSciNet  MATH  Google Scholar 

  36. Sarvepalli, P. K., Klappenecker, A., Rötteler, M.: Asymmetric quantum codes: constructions, bounds and performance. In: Proc. of the Royal Society A, pp. 1645–1672 (2009)

  37. Séguin, G. E.: A class of 1-generator quasi-cyclic codes. IEEE Trans. Inf. Theory 50, 1745–1753 (2004)

    Article  MathSciNet  Google Scholar 

  38. Shor, P. W.: Scheme for reducing decoherence in quantum memory. Phys. Rev. A 52(4), 2493–2496 (1995)

    Article  Google Scholar 

  39. Siap, I., Aydin, N., Ray-Chaudhuri, D. K.: New ternary quasi-cyclic codes with better minimum distances. IEEE Trans. Inf. Theory 46, 1554–1558 (2000)

    Article  MathSciNet  Google Scholar 

  40. Steane, A.: Multiple-particle interference and quantum error correction. Proc. R. Soc. A Math. Phys. Eng. Sci. 452(1954), 2551–2577 (1996)

    Article  MathSciNet  Google Scholar 

  41. Steane, A.: Simple quantum error-correcting codes. Phys. Rev. A 54(6), 4741–4751 (1996)

    Article  MathSciNet  Google Scholar 

  42. Wang, L., Feng, K., Ling, S., Xing, C.: Asymmetric quantum codes: characterization and constructions. IEEE Trans. Inf. Theory 56(6), 2938–2945 (2010)

    Article  MathSciNet  Google Scholar 

  43. Wu, T., Gao, J.: Fu, F.: 1-generator generalized quasi-cyclic codes over \(\mathbb {Z}_{4}\). Cryptogr. Commun. 9, 291–299 (2017)

    Article  MathSciNet  Google Scholar 

  44. Xu, G., Li, R., Guo, L., Lü, L.: New optimal asymmetric quantum codes constructed from constacyclic codes. Int. J. Mod. Phys. B 31(5), 1750030 (2017)

    Article  MathSciNet  Google Scholar 

  45. Zhang, G. H., Chen, B. C., Li, L. C.: New optimal asymmetric quantum codes from constacyclic codes. Mod. Phys. Lett. B 28(1-9), 1450126 (2014)

    Article  MathSciNet  Google Scholar 

  46. Zhu, S., Sun, Z., Li, P.: A class of negacyclic BCH codes and its application to quantum codes. Des. Codes Cryptogr. 86(10), 2139–2165 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous referees for their invaluable suggestions and comments. Without these suggestions and comments, this paper would not have been in the current form. This work is supported by National Natural Science Foundation of China (Nos. 11801564, 11901579).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruihu Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, J., Li, R. & Yao, Y. Quasi-cyclic constructions of asymmetric quantum error-correcting codes. Cryptogr. Commun. 13, 661–680 (2021). https://doi.org/10.1007/s12095-021-00489-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-021-00489-9

Keywords

Mathematics Subject Classification (2010)

Navigation