Abstract
In this paper, the structure of cyclic codes of odd length n over \(\mathfrak {R}=\mathbb {Z}_{4} + v \mathbb {Z}_{4}\), \(v^2 = v\), is conferred. We define a Gray map \(\xi\), which is distance preserving from \(\mathfrak {R}^n\) (Gray distance) to \(\mathbb {Z}^{4n}_2\) (Hamming distance), and show that it is \(\mathbb {Z}_2\)-linear. We construct quantum codes over \(\mathbb {Z}_{2}\) by utilizing the Gray images \(\xi (C)\) of cyclic codes C over \(\mathfrak {R}\). As an application, we provide many new quantum MDS codes and quantum codes with good parameters comparing to known quantum codes.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Rains, E.M., Hardin, R.H., Shor, P.W., Sloane, N.J.A.: A nonadditive quantum code. Physical Review Letters 79(5), 953 (1997)
Roychowdhury, V. P., Vatan, F.: On the existence of nonadditive quantum codes. In: NASA International Conference on Quantum Computing and Quantum Communications, Springer, Berlin, Heidelberg. pp. 325–336 (1999)
Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Physical review A 52(4), R2493 (1995)
Steane, A.: November). Multiple-particle interference and quantum error correction. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 452, 2551–2577 (1996)
Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via code over \(GF(4)\). IEEE Transactions on Information Theory 44(4), 1369–1387 (1998)
Cohen, G., Encheva, S., Litsyn, S.: On binary constructions of quantum codes. IEEE Transactions on Information Theory 45(7), 2495–2498 (1998)
Rains, E.M.: Nonbinary quantum codes. IEEE Transactions on Information Theory 45(6), 1827–1832 (1999)
Ashikhmin, A., Knill, E.: Nonbinary quantum stabilizer codes. IEEE Transactions on Information Theory 47(7), 3065–3072 (2000)
Guenda, K.: Quantum duadic and affine-invariant codes. International Journal of Quantum Information 7(1), 373–384 (2009)
Guenda, K., Gulliver, T.A.: Symmetric and asymmetric quantum codes. International Journal of Quantum Information 11(5), 1350047 (2013)
Guenda, K., Gulliver, T.A.: Quantum codes over rings. International Journal of Quantum Information 12(4), 1450020 (2014)
Gao, J., Wang, Y.: New non-binary quantum codes derived from a class of linear codes. IEEE Access 7, 26418–26421 (2019)
Lv, J., Li, R., Wang, J.: New binary quantum codes derived from one-generator quasi-cyclic codes. IEEE Access 7, 85782–85785 (2019)
Liu, X., Hu, P.: New quantum codes from two linear codes. Quantum Information Processing 19(3), 78 (2020)
Hammons, R.A., Kumar, V.P., Calderbank, A.R., Sloane, N., Sole, P.: The \(\mathbb{Z}_4\)-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Transactions on Information Theory 40(2), 301–319 (1994)
Pless, V.S., Qian, Z.: Cyclic codes and quadratic residue codes over \(\mathbb{Z}_4\). IEEE Transactions on Information Theory 42(5), 1594–1600 (1996)
Gao, J., Fu, F.W., Gao, Y.: Some classes of linear codes over \(\mathbb{Z}_{4} + v\mathbb{Z}_{4}\) and their applications to construct good and new \(\mathbb{Z}_4\)-linear codes. Applicable Algebra in Engineering, Communication Computing 28, 131–153 (2017)
Dinh, H.Q., Singh, A.K., Kumar, N., Sriboonchitta, S.: On constacyclic codes over \(\mathbb{Z}_4[v]/\langle v^2-v \rangle\) and their Gray images. IEEE Communications Letters 22(9), 1758–1761 (2018)
Kumar, N., Singh, A.K.: DNA computing over the ring \(\mathbb{Z}_4[v]/\langle v^2-v \rangle\). International Journal of Biomathematics 11(7), 1850090 (2018)
Kai, X., Zhu, S.: Quaternary construction of quantum codes from cyclic codes over \(\mathbb{F}_4+u\mathbb{F}_4\). International Journal of Quantum Information 9(2), 689–700 (2011)
Dertli, A., Cengellenmis, Y., Eren, S.: On quantum codes obtained from cyclic codes over \(A_2\). International Journal of Quantum Information 13(3), 1550031 (2015)
Grassl, M.: Bounds on the minimum distance of linear codes and quantum codes. Online available at http://www.codetables.de. Accessed 6 March 2022
Thangaraj, A., McLaughlin, S.W.: Quantum codes from cyclic codes over \(GF(4^m)\). IEEE Transactions on Information Theory 47(3), 1176–1178 (2001)
Abualrub, T., Siap, I.: Reversible cyclic codes over \(\mathbb{Z}_4\). Australian Journal of Combinatorics 38, 195–205 (2007)
Huffman, W.C., Pless, V.: Fundamentals of error-correcting codes. Cambridge University Press (2010)
Grassl, M., Beth, T., Roetteler, M.: On optimal quantum codes. International Journal of Quantum Information 2(1), 55–64 (2004)
Acknowledgements
The authors would like to express their sincere approciation to the anonymous referees for their valuable comments and suggestions which helped highly improved the quality of this manuscript.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Dinh, H.Q., Kumar, N. & Singh, A.K. A study of quantum codes obtained from cyclic codes over a non-chain ring. Cryptogr. Commun. 14, 909–923 (2022). https://doi.org/10.1007/s12095-022-00567-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12095-022-00567-6