Skip to main content

Advertisement

Log in

A study of quantum codes obtained from cyclic codes over a non-chain ring

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

In this paper, the structure of cyclic codes of odd length n over \(\mathfrak {R}=\mathbb {Z}_{4} + v \mathbb {Z}_{4}\), \(v^2 = v\), is conferred. We define a Gray map \(\xi\), which is distance preserving from \(\mathfrak {R}^n\) (Gray distance) to \(\mathbb {Z}^{4n}_2\) (Hamming distance), and show that it is \(\mathbb {Z}_2\)-linear. We construct quantum codes over \(\mathbb {Z}_{2}\) by utilizing the Gray images \(\xi (C)\) of cyclic codes C over \(\mathfrak {R}\). As an application, we provide many new quantum MDS codes and quantum codes with good parameters comparing to known quantum codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Rains, E.M., Hardin, R.H., Shor, P.W., Sloane, N.J.A.: A nonadditive quantum code. Physical Review Letters 79(5), 953 (1997)

    Article  Google Scholar 

  2. Roychowdhury, V. P., Vatan, F.: On the existence of nonadditive quantum codes. In: NASA International Conference on Quantum Computing and Quantum Communications, Springer, Berlin, Heidelberg. pp. 325–336 (1999)

  3. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Physical review A 52(4), R2493 (1995)

    Article  Google Scholar 

  4. Steane, A.: November). Multiple-particle interference and quantum error correction. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 452, 2551–2577 (1996)

    Article  MathSciNet  Google Scholar 

  5. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via code over \(GF(4)\). IEEE Transactions on Information Theory 44(4), 1369–1387 (1998)

    Article  MathSciNet  Google Scholar 

  6. Cohen, G., Encheva, S., Litsyn, S.: On binary constructions of quantum codes. IEEE Transactions on Information Theory 45(7), 2495–2498 (1998)

    Article  MathSciNet  Google Scholar 

  7. Rains, E.M.: Nonbinary quantum codes. IEEE Transactions on Information Theory 45(6), 1827–1832 (1999)

    Article  MathSciNet  Google Scholar 

  8. Ashikhmin, A., Knill, E.: Nonbinary quantum stabilizer codes. IEEE Transactions on Information Theory 47(7), 3065–3072 (2000)

    Article  MathSciNet  Google Scholar 

  9. Guenda, K.: Quantum duadic and affine-invariant codes. International Journal of Quantum Information 7(1), 373–384 (2009)

    Article  MathSciNet  Google Scholar 

  10. Guenda, K., Gulliver, T.A.: Symmetric and asymmetric quantum codes. International Journal of Quantum Information 11(5), 1350047 (2013)

    Article  MathSciNet  Google Scholar 

  11. Guenda, K., Gulliver, T.A.: Quantum codes over rings. International Journal of Quantum Information 12(4), 1450020 (2014)

    Article  MathSciNet  Google Scholar 

  12. Gao, J., Wang, Y.: New non-binary quantum codes derived from a class of linear codes. IEEE Access 7, 26418–26421 (2019)

    Article  Google Scholar 

  13. Lv, J., Li, R., Wang, J.: New binary quantum codes derived from one-generator quasi-cyclic codes. IEEE Access 7, 85782–85785 (2019)

    Article  Google Scholar 

  14. Liu, X., Hu, P.: New quantum codes from two linear codes. Quantum Information Processing 19(3), 78 (2020)

    Article  MathSciNet  Google Scholar 

  15. Hammons, R.A., Kumar, V.P., Calderbank, A.R., Sloane, N., Sole, P.: The \(\mathbb{Z}_4\)-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Transactions on Information Theory 40(2), 301–319 (1994)

    Article  MathSciNet  Google Scholar 

  16. Pless, V.S., Qian, Z.: Cyclic codes and quadratic residue codes over \(\mathbb{Z}_4\). IEEE Transactions on Information Theory 42(5), 1594–1600 (1996)

    Article  MathSciNet  Google Scholar 

  17. Gao, J., Fu, F.W., Gao, Y.: Some classes of linear codes over \(\mathbb{Z}_{4} + v\mathbb{Z}_{4}\) and their applications to construct good and new \(\mathbb{Z}_4\)-linear codes. Applicable Algebra in Engineering, Communication Computing 28, 131–153 (2017)

    Article  MathSciNet  Google Scholar 

  18. Dinh, H.Q., Singh, A.K., Kumar, N., Sriboonchitta, S.: On constacyclic codes over \(\mathbb{Z}_4[v]/\langle v^2-v \rangle\) and their Gray images. IEEE Communications Letters 22(9), 1758–1761 (2018)

    Article  Google Scholar 

  19. Kumar, N., Singh, A.K.: DNA computing over the ring \(\mathbb{Z}_4[v]/\langle v^2-v \rangle\). International Journal of Biomathematics 11(7), 1850090 (2018)

    Article  MathSciNet  Google Scholar 

  20. Kai, X., Zhu, S.: Quaternary construction of quantum codes from cyclic codes over \(\mathbb{F}_4+u\mathbb{F}_4\). International Journal of Quantum Information 9(2), 689–700 (2011)

    Article  MathSciNet  Google Scholar 

  21. Dertli, A., Cengellenmis, Y., Eren, S.: On quantum codes obtained from cyclic codes over \(A_2\). International Journal of Quantum Information 13(3), 1550031 (2015)

    Article  MathSciNet  Google Scholar 

  22. Grassl, M.: Bounds on the minimum distance of linear codes and quantum codes. Online available at http://www.codetables.de. Accessed 6 March 2022

  23. Thangaraj, A., McLaughlin, S.W.: Quantum codes from cyclic codes over \(GF(4^m)\). IEEE Transactions on Information Theory 47(3), 1176–1178 (2001)

    Article  MathSciNet  Google Scholar 

  24. Abualrub, T., Siap, I.: Reversible cyclic codes over \(\mathbb{Z}_4\). Australian Journal of Combinatorics 38, 195–205 (2007)

    MATH  Google Scholar 

  25. Huffman, W.C., Pless, V.: Fundamentals of error-correcting codes. Cambridge University Press (2010)

    MATH  Google Scholar 

  26. Grassl, M., Beth, T., Roetteler, M.: On optimal quantum codes. International Journal of Quantum Information 2(1), 55–64 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere approciation to the anonymous referees for their valuable comments and suggestions which helped highly improved the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhay Kumar Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinh, H.Q., Kumar, N. & Singh, A.K. A study of quantum codes obtained from cyclic codes over a non-chain ring. Cryptogr. Commun. 14, 909–923 (2022). https://doi.org/10.1007/s12095-022-00567-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-022-00567-6

Keywords

Mathematics Subject Classification (2010)