Skip to main content
Log in

New upper bounds and constructions of multi-erasure locally recoverable codes

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

Multi-erasure locally recoverable codes (ME-LRCs) are an important class of locally recoverable codes (LRCs) with more constraints on the parameters. In this work, we present a new upper bound for ME-LRCs, which is tighter than that proposed by Cadambe and Mazumdar. The technique is to utilize the largest possible weight of linear codes to control the minimum distance. In addition, we present explicit constructions of ME-LRCs to achieve the proposed bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal, A., Barg, A., Hu, S., Mazumdar, A., Tamo, I.: Combinatorial alphabet-dependent bounds for locally recoverable codes. IEEE Trans. Inf. Theory 64, 3481–3492 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agarwal, A., Mazumdar A.: Bounds on the rate of linear locally repairable codes over small alphabets. arXiv:1607.08547 (2016)

  3. Ball, S.: On sets of vectors of a finite space in which every subset of basis size is a basis. J. Eur. Soc. 14, 733–748 (2012)

    MathSciNet  MATH  Google Scholar 

  4. Ball, S., Blokhuis, A.: A bound for the maximum weight of a linear code. SIAM J. Discret. Math. 27(1), 575–583 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ball, S., De Beule, J.: On sets of vectors of a finite vector space in which every subset of basis size is a basis II. Des. Codes Cryptogr. 65, 5–14 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barg, A., Tamo, I., Vladut, S.: Locally recoverable codes on algebraic curves. IEEE Trans. Inform. Theory 63(8), 4928–4939 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blaum, M.: Extended integrated interleaved codes over any field with applications to locally recoverable codes. IEEE Trans. Inform. Theory 66(2), 936–956 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Blaum, M., Brady, J., Bruck, J., Menon, J.: EVENODD: An efficient scheme for tolerating double disk failures in RAID architectures. IEEE Trans. Comput. 44(2), 192–202 (1995)

    Article  MATH  Google Scholar 

  9. Blaum, M., Hafner, J.L., Hetzler, S.: Partial-MDS codes and their application to RAID type of architectures. IEEE Trans. Inform. Theory 59(7), 4510–4519 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Blaum, M., Hetzler, S.R.: Integrated interleaved codes as locally recoverable codes: properties and performance. Int. J. Inf. Coding Theory 3(4), 324–344 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Blaum, M., Hetzler, S.R.: Extended product and integrated interleaved codes. IEEE Trans. Inform. Theory 64(3), 1497–1513 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Blaum, M., Hetzler, S.R.: Array codes with local properties. IEEE Trans. Inform. Theory 66(6), 3675–3690 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Blaum, M., Plank, J.S., Schwartz, M., Yaakobi, E.: Construction of partial MDS and sector-disk codes with two global parity symbols. IEEE Trans. Inform. Theory 62(5), 2673–2681 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Blaum, M., Roth, R.M.: New array codes for multiple phased burst correction. IEEE Trans. Inform. Theory 39(1), 66–77 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bouyukliev, I.G.: Classification of Griesmer codes and dual transform. Discret. Math. 309(12), 4049–4068 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cheon, E.J.: The non-existence of Griesmer codes with parameters close to codes of Belov type. Des. Codes Cryptogr. 61, 131–139 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cadambe, V., Mazumdar, A.: An upper bound on the size of locally recoverable codes. In: International symposium on network coding, pp. 1–5 (2013)

  18. Cadambe, V.R., Mazumdar, A.: Bounds on the size of locally recoverable codes. IEEE Trans. Inf Theory 61(11), 5787–5794 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cadambe, V.R., Mazumdar, A.: Alphabet-size dependent bounds for exact repair in distributed storage. In: Proceedings IEEE information theory workshop-fall (ITW), pp. 1–3 (2015)

  20. Cai, H., Miao, Y., Schwartz, M., Tang, X.: On optimal locally repairable codes with super-linear length. IEEE Trans. Inf. Theory 66(8), 4853–4868 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen, H., Weng, J., Luo, W., Xu, L.: Long optimal and small-defect LRC codes with unbounded minimum distances. IEEE Trans. Inf. Theory 67 (5), 2786–2792 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen, B., Fang, W., Xia, S.T., Fu, F.W.: Constructions of optimal (γ, δ) locally repairable codes via constacyclic codes. IEEE Trans. Commun. 67(8), 5253–5263 (2019)

    Article  Google Scholar 

  23. Chen, B., Xia, S.T., Hao, J., Fu, F.W.: Construction of optimal cyclic (γ, δ) locally repairable codes. IEEE Trans. Inf Theory 64(4), 2499–2511 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fang, W., Fu, F.W.: Optimal cyclic (γ, δ) locally repairable codes with unbounded length. Finite Fields Appl. 63, 101650 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gibson, G.A.: Redundant disk arrays. MIT Press, Cambridge (1992)

    Google Scholar 

  26. Gopalan, P., Huang, C., Jenkins, B., Yekhanin, S.: Explicit maximally recoverable codes with locality. IEEE Trans. Inform. Theory 60(9), 5245–5256 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gopalan, P., Huang, C., Simitci, H., Yekhanin, S.: On the locality of codeword symbols. IEEE Trans. Inf. Theory 58(11), 6925–6934 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Grezet, M., Freij-Hollanti, R., Westerbäck, T., Hollanti, C.: Alphabet-dependent bounds for linear locally repairable codes based on residual codes. IEEE Trans. Inf. Theory 65(10), 6089–6100 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hamada, N.: A characterization of some [n, k, d; q]-codes meeting the Griesmer bound using a minihyper in a finite projective geometry. Discret. Math. 116, 229–268 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hao, J., Xia, S.T., Shum, K.W., Chen, B., Fu, F.W., Yang, Y.: Bounds and constructions of locally repairable codes: parity-check matrix approach. IEEE Trans. Inf. Theory 66(12), 7465–7474 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Helleseth, T.: A characterisation of codesmeeting the Griesmer bound. Inf. Control 50(2), 128–159 (1981)

    Article  MATH  Google Scholar 

  32. Helleseth, T., vanTiborg, H.C.A.: A new class of codes meeting the Griesmer bound. IEEE Trans. Inf. Theory 27(5), 548–555 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hill, R., Kolev, E.: A survey of recent results on optimal linear codes. In: Combinatorial designs and their applications (Milton Keynes, 1997), pp. 127-152, Chapman Hall/CRC, Boca Raton (1999)

  34. Holzbaur, L., Freij-Hollanti, R., Wachter-Zeh, A.: Cyclic codes with locality and availability. arXiv:1812.06897 (2018)

  35. Huang, C., Chen, M., Li, J.: Pyramid codes: flexible schemes to trade space for access efficiency in reliable data storage systems. In: Proceedings of the IEEE international symposium network computing and applications (NCA 2007), pp. 79–86 (2007)

  36. Huang, P., Yaakobi, E., Siegel, P.H.: Multi-erasure locally recoverable codes over small fields: a tensor product approach. IEEE Trans. Inf. Theory 66 (5), 2609–2624 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  37. Jin, L.: Explicit construction of optimal locally recoverable codes of distance 5 and 6 via binary constant weight codes. IEEE Trans. Inf. Theory 65(8), 4658–4663 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kumegawa, K., Maruta, T.: Nonexistence of some Griesmer codes over \(\mathbb {F}_{q}\). Discret. Math. 339, 515–521 (2016)

    Article  MATH  Google Scholar 

  39. Li, X., Ma, L., Xing, C.: Optimal locally repairable codes via elliptic curves. IEEE Trans. Inf. Theory 65(1), 108–117 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  40. Liu, J., Mesnager, S., Chen, L.: New constructions of optimal locally recoverable codes via good polynomials. IEEE Trans. Inf. Theory 64(2), 889–899 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  41. Luo, Y., Xing, C., Yuan, C.: Optimal locally repairable codes of distance 3 and 4 via cyclic codes. IEEE Trans. Inf. Theory 65(2), 1048–1053 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  42. Maruta, T.: On the nonexistence of Griesmer codes attaining the Griesmer bound. Geom. Dedicata 60, 1–7 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  43. Micheli, G.: Constructions of locally recoverable codes which are optimal. IEEE Trans. Inf. Theory 66(1), 167–175 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  44. Prakash, N., Kamath, G.M., Lalitha, V., Kumar, P.V.: Optimal linear codes with a local-error-correction property. In: 2012 IEEE international symposium on information theory proceedings, IEEE. pp. 2776–2780 (2012)

  45. Qiu, J., Zheng, D.B., Fu, F.W.: New constructions of optimal cyclic (γ, δ) locally repairable codes from their zeros. IEEE Trans. Inf. Theory 67(3), 1596–1608 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  46. Silberstein, N., Rawat, A., Koyluoglu, O., Vishwanath, S.: Optimal locally repairable codes via rank-metric codes. In: IEEE international symposium on information theory (ISIT), pp. 1819–1823 (2013)

  47. Silberstein, N., Zeh, A.: Anticode-based locally repairable codes with high availability. Des. Codes. Cryptogr. 86, 419–445 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  48. Tamo, I., Barg, A.: A family of optimal locally recoverable codes. IEEE Trans. Inf. Theory 60(8), 4661–4676 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  49. Tamo, I., Barg, A., Frolov, A.: Bounds on the parameters of locally recoverable codes. IEEE Trans. Inf. Theory 62(6), 3070–3083 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  50. vanTiborg, H.C.A.: On the uniqueness resp. nonexistence of certain codes meeting the Griesmer bound. Inf. Control 44(1), 16–35 (1980)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers’ valuable comments, which essentially improve the quality of the paper.

Funding

This work was supported in part by the National Natural Science Foundation of China (Grant No. 62032009, 61902149), the Natural Science Foundation of Guangdong Province (Grant No. 2020A1515010393), and the Major Program of Guangdong Basic and Applied Research (Grant No. 2019B030302008).

Author information

Authors and Affiliations

Authors

Contributions

F. Li: writing-original draft. H. Chen: Conceptualization. H. Lao: formal analysis. S. Lyu: writing-review & editing.

Corresponding author

Correspondence to Shanxiang Lyu.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for Publication

Not applicable.

Competing interests

Not applicable.

Availability of supporting data

Not applicable.

Authors’ information

Fagang Li, Hao Chen, Huimin Lao, and Shanxiang Lyu(corresponding author) are with the College of Information Science and Technology/Cyber Security, Jinan University, Guangzhou, Guangdong Province, 510632, China (e-mail: lifagang13@mails.ucas.ac.cn, haochen@jnu.edu.cn, laohuimin@stu2018.jnu.edu.cn, lsx07@jnu.edu.cn).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Chen, H., Lao, H. et al. New upper bounds and constructions of multi-erasure locally recoverable codes. Cryptogr. Commun. 15, 513–528 (2023). https://doi.org/10.1007/s12095-022-00618-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-022-00618-y

Keywords

Mathematics Subject Classification (2010)

Navigation