Skip to main content
Log in

Semi-vectorization: an efficient technique for synthesis and analysis of gravity gradiometry data

  • Research Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

The harmonic synthesis and analysis of the elements of gravitational tensor can be done in few minutes if a suitable programming algorithm is used. Vectorization is an efficient technique for such processes, but the size of matrices will increase when the resolution of synthesis or analysis is high; say higher than 0.5° × 0.5°. Here, we present a technique to manage the computer memory and computational time by excluding one computational loop from the matrix products and we call this method semi-vectorization. Based on this technique, we synthesize the gravitational tensor using the EGM96 geopotential model and after that we analyze the tensor for recovering the geopotential coefficients. MATLAB codes are provided which are able to analyze 224 millions gradiometric data, corresponding to a global grid of 2.5′ × 2.5′ on a sphere in 1,093 s by a personal computer with 2 Gb RAM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Balmino G (2009) Efficient propagation of error covariance matrices of gravitational models: application to GRACE and GOCE. J Geodesy 83:989–995

    Article  Google Scholar 

  • Balmino G, Barriot JP, Koop R, Middle B, Thong NC, Vermeer M (1991) Simulation of gravity gradients: a comparison study. Bull Géod 65:218–229

    Article  Google Scholar 

  • Bethencourt A, Wang J, Rizos C, Kearsley AHW (2005) Using personal computers in spherical harmonic synthesis of high degree Earth geopotential models, Dynamic Planet 2005, Cairns, Australia, 22–26 August

  • Bettadpur SV, Schutz BE, Lundberg JB (1992) Spherical harmonic synthesis and least-squares computations in satellite gravity gradiometry. Bull Géod 66:261–271

    Article  Google Scholar 

  • Ditmar P, Klees R, Kostenko F (2003) Fast and accurate computation of spherical harmonic coefficients from satellite gravity gradiometry data. J Geodesy 76:690–705

    Article  Google Scholar 

  • ESA (1999) Gravity Field and Steady-State Ocean Circulation Mission. ESA SP-1233(1), Report for mission selection of the four candidate earth explorer missions, ESA Publications Division, p 217

  • Eshagh M (2008) Non-singular expression for vector and tensor of gravitation in a geocentric frame. Comput Geosci 34:1762–1768

    Article  Google Scholar 

  • Eshagh M (2009a) On satellite gravity gradiometry, PhD thesis in Geodesy, Royal Institute of Technology (KTH), Stockholm, Sweden

  • Eshagh M (2009b) Impact of vectorization on global synthesis and analysis in gradiometry. Acta Geod Geophys Hung 44:323–342

    Article  Google Scholar 

  • Eshagh M (2009c) Alternative expressions for gravitational gradients in local north oriented frame and tensor spherical harmonics. Acta Geophys 58:215–243

    Article  Google Scholar 

  • Gelderen M, Rummel R (2001) The solution of the general boundary value problem by least-squares. J Geodesy 75:1–11

    Article  Google Scholar 

  • Heiskanen WA, Moritz H (1967) Physical geodesy. Freeman, San Francisco

    Google Scholar 

  • Holmes SA, Featherstone WE (2002) A unified approach to the Clenshaw summation and the recursive computation of very high degree and order normalized associated Legendre functions. J Geodesy 76:279–299

    Article  Google Scholar 

  • Kiamehr R, Eshagh M (2008) EGMlab, a scientific software for determining the gravity and gradient components from global geopotential models. Earth Sci Inf 1:93–103

    Article  Google Scholar 

  • Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, Chinn D, Cox CM, Klosko SM, Luthcke SB, Torrence MH, Wang YM, Williamson RG, Pavlis EC, Rapp RH, Olson TR (1998) Geopotential model EGM96. NASA/TP-1998-206861. Goddard Space Flight Center, Greenbelt

    Google Scholar 

  • Martinec Z (2003) Green’s function solution to spherical gradiometric boundary-value problems. J Geodesy 77:41–49

    Article  Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2008) An Earth gravitational model to degree 2160: EGM2008, Presented at the 2008 General Assembly of the European Geosciences Union,Vienna, Austria, April 13–18

  • Petrovskaya MS, Vershkov AN (2006) Non-singular expressions for the gravity gradients in the local north-oriented and orbital reference frames. J Geodesy 80:117–127

    Article  Google Scholar 

  • Rummel R, Sanso F, Gelderen M, Koop R, Schrama E, Brovelli M, Migiliaccio F, Sacerdote F (1993) Spherical harmonic analysis of satellite gradiometry. Publ Geodesy, New Series, No. 39 Netherlands Geodetic Commission, Delft

  • Sneeuw N (1994) Global spherical harmonic analysis by least-squares and numerical quadrature methods in historical perspective. Geophys J Int 118:707–716

    Article  Google Scholar 

  • Tscherning CC, Poder K (1982) Some Geodetic application of Clenshaw summation, Bollettino di geodesia e scienze affini No. 4

Download references

Acknowledgment

The first author is thankful to the Swedish National Space Board (SNSB) for financial support of the project 63:07:1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Eshagh.

Additional information

Communicated by: H. A. Babaie

Appendices

Appendix A

The constant coefficients of Eqs. 2b2f (Eshagh 2009c):

$$ a_{nm}^1 = \frac{1}{4}\sqrt {{n + \left| m \right|}} \sqrt {{n + \left| m \right| - 1}} \sqrt {{n - \left| m \right| + 1}} \sqrt {{n - \left| m \right| + 2}} \sqrt {{\frac{{2 - {\delta_{\left| m \right|,0}}}}{{2 - {\delta_{\left| m \right| - 2,0}}}}}} $$
(A.1)
$$ a_{nm}^2 = - \frac{1}{4}\left[ {\left( {n + \left| m \right|} \right)\left( {n - \left| m \right| + 1} \right) + \left( {n - \left| m \right|} \right)\left( {n + \left| m \right| + 1} \right)} \right] - \left( {n + 1} \right) $$
(A.2)
$$ a_{nm}^3 = \frac{1}{4}\sqrt {{n + \left| m \right| + 2}} \sqrt {{n + \left| m \right| + 1}} \sqrt {{n - \left| m \right|}} \sqrt {{n - \left| m \right| - 1}} \sqrt {{\frac{{2 - {\delta_{\left| m \right|,0}}}}{{2 - {\delta_{\left| m \right| + 2,0}}}}}} $$
(A.3)
$$ a_{nm}^4 = a_{nm}^2 + \left( {n + 1} \right)\left( {n + 2} \right) $$
(A.4)
$$ b_{nm}^1 = \frac{1}{4}\sqrt {{\frac{{2 - {\delta_{\left| m \right|,0}}}}{{2 - {\delta_{\left| m \right| - 2,0}}}}}} \sqrt {{n + \left| m \right|}} \sqrt {{n - \left| m \right| + 1}} \sqrt {{n - \left| m \right| + 2}} \sqrt {{n + \left| m \right| - 1}} $$
(A.5)
$$ b_{nm}^2 = \frac{1}{4}\left[ {\left( {n + \left| m \right|} \right)\left( {n + \left| m \right| - 1} \right) + \frac{{\left| m \right| - 1}}{{\left| m \right| + 1}}\left( {n - \left| m \right|} \right)\left( {n - \left| m \right| - 1} \right) + \frac{{2\left( {n + \left| m \right| + 1} \right)\left( {n + \left| m \right| + 2} \right)}}{{\left| m \right| + 1}}} \right] - \left( {n + 1} \right) $$
(A.6)
$$ b_{nm}^3 = \frac{1}{4}\sqrt {{\frac{{2 - {\delta_{\left| m \right|,0}}}}{{2 - {\delta_{\left| m \right| + 2,0}}}}}} \sqrt {{n - \left| m \right|}} \sqrt {{n - \left| m \right| - 1}} \sqrt {{n + \left| m \right| + 2}} \sqrt {{n + \left| m \right| + 1}} $$
(A.7)
$$ b_{nm}^4 = b_{nm}^2 + \left( {n + 1} \right)\left( {n + 2} \right) $$
(A.8)
$$ c_{nm}^1 = \frac{m}{{4\left| m \right|}}\sqrt {{\frac{{\left( {2 - {\delta_{\left| m \right|,0}}} \right)\left( {2n + 1} \right)}}{{\left( {2 - {\delta_{\left| m \right| - 2,0}}} \right)\left( {2n - 1} \right)}}}} \sqrt {{n + \left| m \right|}} \sqrt {{n + \left| m \right| - 1}} \sqrt {{n + \left| m \right| - 2}} \sqrt {{n - \left| m \right| + 1}} $$
(A.9)
$$ c_{nm}^2 = \frac{m}{2}\sqrt {{n + \left| m \right|}} \sqrt {{n - \left| m \right|}} \sqrt {{\frac{{2n + 1}}{{2n - 1}}}} $$
(A.10)
$$ c_{nm}^3 = \frac{m}{{4\left| m \right|}}\sqrt {{\frac{{\left( {2 - {\delta_{\left| m \right|,0}}} \right)\left( {2n + 1} \right)}}{{\left( {2 - {\delta_{\left| m \right| + 2,0}}} \right)\left( {2n - 1} \right)}}}} \sqrt {{n - \left| m \right|}} \sqrt {{n - \left| m \right| - 1}} \sqrt {{n - \left| m \right| - 2}} \sqrt {{n + \left| m \right| + 1}} $$
(A.11)
$$ d_{nm}^1 = \frac{m}{{4\left| m \right|}}\sqrt {{\frac{{\left( {2 - {\delta_{\left| m \right|,0}}} \right)\left( {2n + 1} \right)}}{{\left( {2 - {\delta_{\left| m \right| - 2,0}}} \right)\left( {2n - 3} \right)}}}} \sqrt {{n + \left| m \right|}} \sqrt {{n - \left| m \right| + 1}} \sqrt {{n - \left| m \right| + 2}} \sqrt {{n - \left| m \right| + 3}} $$
(A.12)
$$ d_{nm}^2 = \frac{m}{{4\left| m \right|}}\left[ {\left( {n + \left| m \right|} \right)\left( {n - \left| m \right| + 1} \right) - \left( {n - \left| m \right|} \right)\left( {n - \left| m \right| + 1} \right)} \right]\sqrt {{\frac{{\left( {2n + 1} \right)\left( {n + \left| m \right| + 1} \right)}}{{\left( {2n + 3} \right)\left( {n - \left| m \right| + 1} \right)}}}} $$
(A.13)
$$ d_{nm}^3 = - \frac{m}{{4\left| m \right|}}\sqrt {{\frac{{\left( {2 - {\delta_{\left| m \right|,0}}} \right)\left( {2n + 1} \right)}}{{\left( {2 - {\delta_{\left| m \right| + 2,0}}} \right)\left( {2n + 3} \right)}}}} \sqrt {{n - \left| m \right|}} \sqrt {{n + \left| m \right| + 1}} \sqrt {{n + \left| m \right| + 2}} \sqrt {{n + \left| m \right| + 3}} $$
(A.14)
$$ e_{nm}^1 = \frac{{n + 2}}{2}\sqrt {{n + \left| m \right|}} \sqrt {{n - \left| m \right| + 1}} \sqrt {{\frac{{2 - {\delta_{\left| m \right|,0}}}}{{2 - {\delta_{\left| m \right| - 1,0}}}}}} $$
(A.15)
$$ e_{nm}^2 = - \frac{{n + 2}}{2}\sqrt {{n - \left| m \right|}} \sqrt {{n + \left| m \right| + 1}} \sqrt {{\frac{{2 - {\delta_{\left| m \right|,0}}}}{{2 - {\delta_{\left| m \right| + 1,0}}}}}} $$
(A.16)
$$ f_{nm}^1 = \frac{{m\left( {n + 2} \right)}}{{2\left| m \right|}}\sqrt {{n + \left| m \right|}} \sqrt {{n + \left| m \right| - 1}} \sqrt {{\frac{{\left( {2 - {\delta_{\left| m \right|,0}}} \right)\left( {2n + 1} \right)}}{{\left( {2 - {\delta_{\left| m \right| - 1,0}}} \right)\left( {2n - 1} \right)}}}} $$
(A.17)
$$ f_{nm}^2 = \frac{{m\left( {n + 2} \right)}}{{2\left| m \right|}}\sqrt {{n - \left| m \right|}} \sqrt {{n - \left| m \right| - 1}} \sqrt {{\frac{{\left( {2 - {\delta_{\left| m \right|,0}}} \right)\left( {2n + 1} \right)}}{{\left( {2 - {\delta_{\left| m \right| + 1,0}}} \right)\left( {2n - 1} \right)}}}} $$
(A.18)
$$ g_{nm}^1 = \frac{{m\left( {n + 2} \right)}}{{2\left| m \right|}}\sqrt {{n - \left| m \right| + 1}} \sqrt {{n - \left| m \right| + 2}} \sqrt {{\frac{{\left( {2 - {\delta_{\left| m \right|,0}}} \right)\left( {2n + 1} \right)}}{{\left( {2 - {\delta_{\left| m \right| - 1,0}}} \right)\left( {2n + 3} \right)}}}} $$
(A.19)
$$ g_{nm}^2 = \frac{{m\left( {n + 2} \right)}}{{2\left| m \right|}}\sqrt {{n + \left| m \right| + 1}} \sqrt {{n + \left| m \right| + 2}} \sqrt {{\frac{{\left( {2 - {\delta_{\left| m \right|,0}}} \right)\left( {2n + 1} \right)}}{{\left( {2 - {\delta_{\left| m \right| + 1,0}}} \right)\left( {2n + 3} \right)}}}} . $$
(A.20)

Appendix B

The constant coefficients of Eqs. 4a4d:

$$ h_{nm}^1 = \frac{1}{2}\sqrt {{\frac{{2 - {\delta_{\left| m \right|,0}}}}{{2 - {\delta_{\left| m \right| - 2,0}}}}}} \sqrt {{n + \left| m \right|}} \sqrt {{n + \left| m \right| - 1}} \sqrt {{n - \left| m \right| + 1}} \sqrt {{n - \left| m \right| + 2}} $$
(B.1)
$$ h_{nm}^2 = {m^2} $$
(B.2)
$$ h_{nm}^3 = \frac{1}{2}\sqrt {{\frac{{2 - {\delta_{\left| m \right|,0}}}}{{2 - {\delta_{\left| m \right| + 2,0}}}}}} \sqrt {{n - \left| m \right|}} \sqrt {{n - \left| m \right| - 1}} \sqrt {{n + \left| m \right| + 1}} \sqrt {{n + \left| m \right| + 2}} $$
(B.3)
$$ k_{nm}^1 = \frac{m}{{2\left| m \right|}}\sqrt {{\frac{{\left( {2 - {\delta_{\left| m \right|,0}}} \right)\left( {2n + 1} \right)}}{{\left( {2 - {\delta_{\left| m \right| - 2,0}}} \right)\left( {2n + 3} \right)}}}} \sqrt {{n + \left| m \right|}} \sqrt {{n - \left| m \right| + 3}} \sqrt {{n - \left| m \right| + 2}} \sqrt {{n - \left| m \right| + 1}} $$
(B.4)
$$ k_{nm}^2 = \frac{m}{2}\sqrt {{\frac{{\left( {2n + 1} \right)\left( {n + m + 1} \right)}}{{\left( {2n + 3} \right)\left( {n - m + 1} \right)}}}} \left[ {\left( {n + m + 2} \right)\left( {n - m + 1} \right) - \left( {n - m + 2} \right)\left( {n - m + 1} \right)} \right] $$
(B.5)
$$ k_{nm}^3 = - \frac{m}{{2\left| m \right|}}\sqrt {{\frac{{\left( {2 - {\delta_{\left| m \right|,0}}} \right)\left( {2n + 1} \right)}}{{\left( {2 - {\delta_{\left| m \right| + 2,0}}} \right)\left( {2n + 3} \right)}}}} \sqrt {{n - \left| m \right|}} \sqrt {{n + \left| m \right| + 3}} \sqrt {{n + \left| m \right| + 2}} \sqrt {{n + \left| m \right| + 1}} $$
(B.6)
$$ l_{nm}^1 = \frac{m}{{2\left| m \right|}}\sqrt {{\frac{{\left( {2 - {\delta_{\left| m \right|,0}}} \right)\left( {2n + 1} \right)}}{{\left( {2 - {\delta_{\left| m \right| - 2,0}}} \right)\left( {2n - 1} \right)}}}} \sqrt {{n + \left| m \right|}} \sqrt {{n + \left| m \right| - 3}} \sqrt {{n + \left| m \right| - 2}} \sqrt {{n - \left| m \right| + 1}} $$
(B.7)
$$ l_{nm}^2 = - m\sqrt {{\frac{{2n + 1}}{{2n - 1}}}} \sqrt {{n - \left| m \right|}} \sqrt {{n + \left| m \right|}} $$
(B.8)
$$ l_{nm}^3 = - \frac{m}{{2\left| m \right|}}\sqrt {{\frac{{\left( {2 - {\delta_{\left| m \right|,0}}} \right)\left( {2n + 1} \right)}}{{\left( {2 - {\delta_{\left| m \right| + 2,0}}} \right)\left( {2n - 1} \right)}}}} \sqrt {{n - \left| m \right|}} \sqrt {{n - \left| m \right| - 1}} \sqrt {{n - \left| m \right| - 2}} \sqrt {{n + \left| m \right| + 1}} $$
(B.9)

and \( e{\prime}_{nm}^1 = e_{nm}^1/\left( {n + 2} \right) \), \( e{\prime}_{nm}^2 = e_{nm}^2/\left( {n + 2} \right) \), \( g{\prime}_{nm}^1 = g_{nm}^1/\left( {n + 2} \right) \), \( g{\prime}_{nm}^2 = g_{nm}^2/\left( {n + 2} \right) \), \( f{\prime}_{nm}^1 = f_{nm}^1/\left( {n + 2} \right) \), \( f{\prime}_{nm}^2 = f_{nm}^2/\left( {n + 2} \right) \).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eshagh, M., Abdollahzadeh, M. Semi-vectorization: an efficient technique for synthesis and analysis of gravity gradiometry data. Earth Sci Inform 3, 149–158 (2010). https://doi.org/10.1007/s12145-010-0062-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-010-0062-3

Keywords

Navigation