Skip to main content

Advertisement

Log in

Data augmentation based morphological classification of galaxies using deep convolutional neural network

  • Research Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

From the early stages of Astronomy, the classification of galaxies has been a conundrum that has left astrophysicists in a situation of quandary. Although, previous methods did a phenomenal job in classifying galaxies but while analysing them, certain inefficiencies had been revealed which cannot be overlooked. The objective had been to conduct an analysis of different types of machine learning techniques that have been used to classify galaxies. This analysis had been conducted on the basis of different attributes taken for different types of classification of galaxies. A method had been proposed to classify galaxies with higher accuracy than previous methods. The configuration for the literature analysis used datasets such as ESO-LV and SDSS and discussed the antecedent techniques for classifying galaxies. It had been inferred that a Convolutional Neural Network with certain data augmentation for irregular Galaxies (Irr) gives the best result of all the algorithms that have been discussed in the literature and its analysis. Owing to the aforementioned, an implementation accentuating the use of deep learning algorithms with certain Data Augmentation techniques and certain different activation functions, named daMCOGCNN (data augmentation-based MOrphological Classifier Galaxy Using Convolutional Neural Networks) had been proposed for morphological classification of galaxies. The dataset comprises of 4614 images from SDSS Image Gallery, Galaxy Zoo challenge and Hubble Image Gallery. The efficient implementation of this method gave a testing accuracy of approximately 98% and 97.92% accuracy had been achieved on a dataset taken from different websites such as AstroBin and other such sources. The model introduced here outperforms its earlier contemporaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • AstroBin (2019). Retrieved 22 June 2019, from https://www.astrobin.com/welcome/

  • Bicknell GV (1994) Relativistic jets and the Fanaroff-Riley classification of radio galaxies. arXiv preprint astro-ph/9406064

  • Blanton MR, Bershady MA, Abolfathi B, Albareti FD, Prieto CA, Almeida A et al (2017) Sloan digital sky survey IV: mapping the Milky Way, nearby galaxies, and the distant universe. Astron J 154(1):28

    Google Scholar 

  • Bolton AS, Schlegel DJ, Aubourg É, Bailey S, Bhardwaj V, Brownstein JR et al (2012) Spectral classification and redshift measurement for the SDSS-III baryon oscillation spectroscopic survey. Astron J 144(5):144

    Google Scholar 

  • Buitinck L, Louppe G, Blondel M, Pedregosa F, Mueller A, Grisel O et al. (2013) API design for machine learning software: experiences from the scikit-learn project. arXiv preprint arXiv:1309.0238

  • Buta RJ, Sheth K, Athanassoula E, Bosma A, Knapen JH, Laurikainen E, Courtois H (2015) A classical morphological analysis of galaxies in the Spitzer survey of stellar structure in galaxies (S4G). Astrophys J Suppl Ser 217(2):32

    Google Scholar 

  • Castillo D, Shukla A, Wright T (2018) Convolutional neural networks for galaxy morphology classification. Machine Learning (course 1DT071) Uppsala University–Spring 2018

  • Chawla NV, Japkowicz N, Kotcz A (2004) Special issue on learning from imbalanced data sets. ACM SIGKDD Explor Newsl 6(1):1–6

    Google Scholar 

  • Clevert DA, Unterthiner T, Hochreiter S (2015) Fast and accurate deep network learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289

  • Colless M, Dalton G, Maddox S, Sutherland W, Norberg P, Cole S et al (2001) The 2df galaxy redshift survey: spectra and redshifts. Mon Not R Astron Soc 328(4):1039–1063

    Google Scholar 

  • Dai JM, Tong J (2018) Galaxy morphology classification with deep convolutional neural networks. arXiv preprint arXiv:1807.10406

  • De La Calleja J, Fuentes O (2004) Machine learning and image analysis for morphological galaxy classification. Mon Not R Astron Soc 349(1):87–93

    Google Scholar 

  • Doi M, Tanaka M, Fukugita M, Gunn JE, Yasuda N, Ivezić Ž et al (2010) Photometric response functions of the sloan digital sky survey imager. Astron J 139(4):1628

    Google Scholar 

  • Dureja A, Pahwa P (2019) Analysis of non-linear activation functions for classification tasks using convolutional neural networks. Recent Pat Comput Sci 12(3):156–161

    Google Scholar 

  • Dyrmann M, Karstoft H, Midtiby HS (2016) Plant species classification using deep convolutional neural network. Biosyst Eng 151:72–80

    Google Scholar 

  • Fernandes RC, Mateus A, Sodré L, Stasińska G, Gomes JM (2005) Semi-empirical analysis of Sloan Digital Sky Survey galaxies–I. Spectral synthesis method. Mon Not R Astron Soc 358(2):363–378

    Google Scholar 

  • Folkes S, Ronen S, Price I, Lahav O, Colless M, Maddox S et al (1999) The 2dF Galaxy Redshift Survey: spectral types and luminosity functions. Mon Not R Astron Soc 308(2):459–472

    Google Scholar 

  • François C (2015) keras. Retrieved from https://github.com/fchollet/keras

  • Fukugita M, Shimasaku K, Ichikawa T, Gunn JE (1996) The Sloan digital sky survey photometric system (No. IASSNS-AST-96-3). SCAN-9601313

  • González RE, Muñoz RP, Hernández CA (2018) Galaxy detection and identification using deep learning and data augmentation. Astron Comput 25:103–109

    Google Scholar 

  • Gunn JE, Carr M, Rockosi C, Sekiguchi M, Berry K, Elms B et al (1998) The Sloan digital sky survey photometric camera. Astron J 116(6):3040

    Google Scholar 

  • Gunn JE, Siegmund WA, Mannery EJ, Owen RE, Hull CL, Leger RF et al (2006) The 2.5 m telescope of the sloan digital sky survey. Astron J 131(4):2332

    Google Scholar 

  • Gupta S, Saxena A (2019) Classification of operational and financial variables affecting the bullwhip effect in Indian sectors: a machine learning approach. Recent Pat Comput Sci 12(3):171–179

    Google Scholar 

  • Hansen N (2006) The CMA evolution strategy: a comparing review. In: Towards a new evolutionary computation. Springer, Berlin, Heidelberg, pp 75–102

    Google Scholar 

  • Hernández J, Sucar LE, Morales EF (2014) Multidimensional hierarchical classification. Expert Syst Appl 41(17):7671–7677

    Google Scholar 

  • Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4700–4708)

  • Hubblesite.org (2000). HubbleSite: Images. [online] Available at: https://hubblesite.org/images/gallery. Accessed 22 Jun. 2019

  • Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng 9(3):90

    Google Scholar 

  • Jarvis CH, Stuart N (1996) The sensitivity of a neural network for classifying remotely sensed imagery. Comput Geosci 22(9):959–967

    Google Scholar 

  • Kaggle (2014). Galaxy Zoo – The Galaxy Challenge. Retrieved 23 June 2019, from https://www.kaggle.com/c/galaxy-zoo-the-galaxy-challenge/data

  • Kamar E, Hacker S, Horvitz E (2012). Combining human and machine intelligence in large-scale crowdsourcing. In Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems-Volume 1 (pp. 467–474). International Foundation for Autonomous Agents and Multiagent Systems

  • Kauffmann G, Colberg JM, Diaferio A, White SD (1999) Clustering of galaxies in a hierarchical universe—I. Methods and results at z=0. Mon Not R Astron Soc 303(1):188–206

    Google Scholar 

  • Khalifa NE, Taha MH, Hassanien AE, Selim I (2018). Deep Galaxy V2: robust deep convolutional neural networks for galaxy morphology classifications. In 2018 International Conference on Computing Sciences and Engineering (ICCSE) (pp. 1–6). IEEE

  • Kim EJ, Brunner RJ (2016). Star-galaxy classification using deep convolutional neural networks. Monthly Notices of the Royal Astronomical Society, stw2672

  • Kormendy J, Bender R (2011) A revised parallel-sequence morphological classification of galaxies: structure and formation of S0 and spheroidal galaxies. Astrophys J Suppl Ser 198(1):2

    Google Scholar 

  • Kormendy J, Bender R, Cornell ME (2011) Supermassive black holes do not correlate with galaxy disks or pseudobulges. Nature 469(7330):374–376

    Google Scholar 

  • Lahav O, Nairn A, Sodre L Jr, Storrie-Lombardi MC (1996) Neural computation as a tool for galaxy classification: methods and examples. Mon Not R Astron Soc 283(1):207–221

    Google Scholar 

  • Li L, Sang N, Yan L, Gao C (2017) Motion-blur kernel size estimation via learning a convolutional neural network. Pattern Recogn Lett 119:86–93

  • Marin MA, Sucar LE, Gonzalez JA, Diaz R (2013) A hierarchical model for morphological galaxy classification. In The Twenty-Sixth International FLAIRS Conference

  • Mathias AC, Rech PC (2012) Hopfield neural network: the hyperbolic tangent and the piecewise-linear activation functions. Neural Netw 34:42–45

    Google Scholar 

  • Pedamonti D (2018) Comparison of non-linear activation functions for deep neural networks on MNIST classification task. arXiv preprint arXiv:1804.02763

  • Peng Y, Kou G, Chen Z, Shi Y (2006) Recent trends in data mining (DM): document clustering of DM publications. In 2006 International Conference on Service Systems and Service Management (Vol. 2, pp. 1653–1659). IEEE

  • Pradeep S, Kallimani JS (2019) Machine learning based predictive action on categorical non-sequential data. Recent Pat Comput Sci 12:1

    Google Scholar 

  • Prieto CA, Majewski SR, Schiavon R, Cunha K, Frinchaboy P, Holtzman J et al (2008) APOGEE: the Apache point observatory galactic evolution experiment. Astron Nachr Astron Notes 329(9–10):1018–1021

    Google Scholar 

  • Radford A, Metz L, Chintala S (2015) Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434

  • Rao TYS, Reddy PC (2019) Classification and retrieval of images based on extensive context and content feature set. Recent Pat Comput Sci 12(3):162–170

    Google Scholar 

  • Raw Astrophotography Data (n.d.). Retrieved 22 June 2019, from http://www.rawastrodata.com/

  • Richard MD, Lippmann RP (1991) Neural network classifiers estimate Bayesian a posterior probability. Neural Comput 3(4):461–483

    Google Scholar 

  • Sehnke F, Osendorfer C, Rückstieß T, Graves A, Peters J, Schmidhuber J (2010) Parameter-exploring policy gradients. Neural Netw 23(4):551–559

    Google Scholar 

  • Selim IM, El Aziz MA (2017) Automated morphological classification of galaxies based on projection gradient nonnegative matrix factorization algorithm. Exp Astron 43(2):131–144

    Google Scholar 

  • Selim I, Keshk AE, El Shourbugy BM (2016) Galaxy image classification using non-negative matrix factorization. Int J Comput Appl 137(5):4–8

    Google Scholar 

  • Shamir L (2009) Automatic morphological classification of galaxy images. Mon Not R Astron Soc 399(3):1367–1372

    Google Scholar 

  • Shamir L (2012) Automatic detection of peculiar galaxies in large datasets of galaxy images. J Comput Sci 3(3):181–189

    Google Scholar 

  • Singh SK, Goyal A (2019) A stack autoencoders based deep neural network approach for cervical cell classification in pap-smear images. Recent Pat Comput Sci 12:1

    Google Scholar 

  • Singh HP, Gulati RK, Gupta R (1998) Stellar spectral classification using principal component analysis and artificial neural networks. Mon Not R Astron Soc 295(2):312–318

    Google Scholar 

  • Slonim N, Somerville R, Tishby N, Lahav O (2001) Objective classification of galaxy spectra using the information bottleneck method. Mon Not R Astron Soc 323(2):270–284

    Google Scholar 

  • Song S, Que Z, Hou J, Du S, Song Y (2019) An efficient convolutional neural network for small traffic sign detection. J Syst Archit

  • Storrie-Lombardi MC, Lahav O, Sodre L Jr, Storrie-Lombardi LJ (1992) Morphological classification of galaxies by artificial neural networks. Mon Not R Astron Soc 259(1):8P–12P

    Google Scholar 

  • Ting KM, Witten IH (1999) Issues in stacked generalization. J Artif Intell Res 10:271–289

    Google Scholar 

  • Weir N, Fayyad UM, Djorgovski S (1995) Automated star/galaxy classification for digitized POSS-II. Astron J 109:2401

    Google Scholar 

  • Willett KW, Lintott CJ et al (2013) Galaxy Zoo 2: detailed morphological classifications for 304 122 galaxies from the Sloan Digital Sky Survey. Mon Not R Astron Soc 435(4):2835–2860. https://doi.org/10.1093/mnras/stt1458

    Article  Google Scholar 

  • Wing J (2019) Microsoft.com [Online]. Available: https://www.microsoft.com/en-us/research/wp-content/uploads/2012/08/Jeannette_Wing.pdf. Accessed: 01 Jun 2019

  • Wolpert DH (1992) Stacked generalization. Neural Netw 5(2):241–259

    Google Scholar 

  • Yamauchi C, Ichikawa SI, Doi M, Yasuda N, Yagi M, Fukugita M et al (2005) Morphological classification of galaxies using photometric parameters: the concentration index versus the coarseness parameter. Astron J 130(4):1545

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Jude Hemanth.

Additional information

Communicated by: H. Babaie

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mittal, A., Soorya, A., Nagrath, P. et al. Data augmentation based morphological classification of galaxies using deep convolutional neural network. Earth Sci Inform 13, 601–617 (2020). https://doi.org/10.1007/s12145-019-00434-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-019-00434-8

Keywords

Navigation