Skip to main content
Log in

Multi-GNSS (GPS/Galileo) single-frequency precise point positioning: a case study over Victoria

  • Research Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

The performance of multi-GNSS (GPS/Galileo) Single-Frequency Precise Point Positioning (SF-PPP) is studied for both static and kinematic PPP users. In the underlying multi-epoch model, the user ambiguities are assumed constant in time, while the positioning parameters are treated as constant (the static case) and fully unlinked in time (the kinematic case). To demonstrate the quality of single-frequency PPP-aided by European Galileo system besides GPS, experimental datasets of Victoria permanent GNSS network which is a sub-network of ARGN (Australian Regional GNSS Network) are analyzed using self-developed software routines. It is shown how Galileo system can enhance the SF-PPP performance as compared to GPS-only single-frequency for high grade geodetic receivers. Our numerical results demonstrate that multi-GNSS SF-PPP outperforms GPS-only in kinematic mode in terms of positioning accuracy. The standard deviation (STD) values of the positioning errors for multi-GNSS/GPS-only solutions are within 2 mm/4 mm (horizontal) and 4 mm/10 mm (vertical). The root-mean-squared error (RMS) values are also within 10 mm/10 mm (horizontal) and 35 mm/50 mm (vertical).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Afifi A, El-Rabbany A (2015) Performance analysis of several GPS/Galileo precise point positioning models. Sensors 15:14701–14726. https://doi.org/10.3390/s150614701

    Article  Google Scholar 

  • Choy SL (2009) An investigation into the accuracy of single frequency precise point positioning (PPP). Thesis (PhD) in School of Mathematical and Geospatial Sciences College of Science, Engineering and Health, RMIT University

  • de Bakker PF, Tiberius CCJM (2017) Real-time multi-GNSS single-frequency precise point positioning. GPS Solut 21:1791–1803

    Article  Google Scholar 

  • Eueler HJ, Goad C (1991) On optimal filtering of GPS dual frequency observations without using orbit information. BullGéod 65(2):130–143

    Google Scholar 

  • Escribano MG (2017) E1 Galileo signal receiver. Thesis Submitted to the Faculty of Escola Tècnica dÉEnginyeria de Telecomunicació de Barcelona, Universitat PolitTècnica de Catalunya

  • Hofmann-Wellenhof B, Lichtenegger H, Wasle E (2008) GNSS: global navigation satellite systems: GPS, glonass, Galileo and more. Springer, New York

    Google Scholar 

  • Jwo DJ, Lai CN (2008) Unscented Kalman filter with nonlinear dynamic process modeling for GPS navigation. GPS Solut 12:249–260. https://doi.org/10.1007/s10291-007-0081-9

    Article  Google Scholar 

  • Kaplan ED (1996) Understanding GPS: Principles and applications. Artech House, p 556

  • Khodabandeh A (2014) Array-aided single-differenced satellite phase bias determination: methodology and results. Proceedings of the 27th International Technical Meeting of the ION Satellite Division ION GNSS+ 2014, Tampa, Florida

  • Kouba J, Heroux P (2001) GPS precise point positioning using IGS orbit products. GPS Solution 5(2):12–28. https://doi.org/10.1007/PL00012883

    Article  Google Scholar 

  • Liu T, Yuan Y, Zhang B, Wang N, Tan B, Chen Y (2016) Multi-GNSS precise point positioning (MGPPP) using raw observations. J Geod 91:253–268. https://doi.org/10.1007/s00190-016-0960-3

    Article  Google Scholar 

  • Nie Z, Liu F, Gao Y (2020) Real-time precise point positioning with a low-cost dual-frequency GNSS device. GPS Solut https://doi.org/10.1007/s10291-019-0922-3

  • Nobakht-Ersi F, Safari A (2020) Single point positioning performance of single-frequency code-based mode with ionospheric modelling: a case study over Iran. J Spatial Sci: 1–22. https://doi.org/10.1080/14498596.2020.1835567

  • Odijk D (2002) Fast precise GPS positioning in the presence of ionospheric delays. In: Publications on geodesy, 52, Netherlands Geodetic Commission, Delft, The Netherlands

  • Odijk D, Teunissen PJG, Khodabandeh A (2014) Single-frequency PPP-RTK: Theory and experimental results. International Association of Geodesy Symposium (IAG) 139:167–173. Springer

    Article  Google Scholar 

  • Odijk D, Teunissen PJG, Zhang B (2012) Single-frequency integer ambiguity resolution enabled GPS precise point positioning. J Surv. Eng 138(4):193–202. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000085

    Article  Google Scholar 

  • Odolinski R, Teunissen PJG, Odijk D (2014) Combined BDS, Galileo, QZSS and GPS single-frequency RTK. GPS Solut, https://doi.org/10.1007/s10291-014-0376-6

  • Odolinski R, Teunissen PJG (2017) Low-cost, high-precision, single-frequency GPS-BDS RTK positioning. GPS Solut 21:1315–1330. https://doi.org/10.1007/s10291-017-0613-x

    Article  Google Scholar 

  • Odolinski R, Teunissen PJG (2020) Best integer equivariant estimation: performance analysis usingreal data collected by low-cost, single- and dual- frequency, multi-GNSS receivers for short- to long-baselineRTK positioning. J Geod 94:91. https://doi.org/10.1007/s00190-020-01423-2

    Article  Google Scholar 

  • Paziewski J, Wielgosz P (2015) Accounting for Galileo-GPS inter-system biases in precise satellite positioning. J Geod 89:81–93. https://doi.org/10.1007/s00190-014-0763-3

    Article  Google Scholar 

  • Petrovski IG (2014) GPS, GLONASS, Galileo, and BeiDou for mobile devices. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rovira-Garcia A, Juan JM, Sanz J, Gonzàlez-Casado G, Bertran E (2016) Fast precise point positioning: A system to provide corrections for single and Multi-frequency navigation. Journal of The Institute of Navigation 63(3):231–247

    Article  Google Scholar 

  • Teunissen PJG, Kleusberg A (1998) GPS for geodesy, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Teunissen PJG (2000) Testing theory; an introduction, Delft University Press

  • Teunissen PJG, Khodabandeh A (2019) GLONASS ambiguity resolution. GPS Solutions 23(101). https://doi.org/10.1007/s10291-019-0890-7

  • Verhagen S (2005) The GNSS integer ambiguities: estimation and validation. Thesis (PhD), Delft Univ of Technology, Delft, The Netherlands

  • Witchayangkoon B (2000) Elements of GPS precise point positioning Thesis (PhD) in Spatial Information Science and Engineering, The Graduate School, The University of Maine

Download references

Acknowledgments

The authors wish to acknowledge the Geoscience Australia of Australian Government that provided the data for evaluation in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fereydoun Nobakht-Ersi.

Additional information

Communicated by: H. Babaie

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nobakht-Ersi, F., Safari, A. Multi-GNSS (GPS/Galileo) single-frequency precise point positioning: a case study over Victoria. Earth Sci Inform 14, 1303–1313 (2021). https://doi.org/10.1007/s12145-021-00663-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-021-00663-w

Keywords

Navigation