Skip to main content
Log in

Solving planar location problems by global optimization

  • Review Article
  • Published:
Logistics Research

Abstract

In this paper we review global optimization techniques and their application to location problems. The following techniques are reviewed: Big Square Small Square, Big Cube Small Cube, Big Triangle Small Triangle, Big Segment Small Segment, DC Optimization and the Ordered Median formulation. These techniques are described, and examples for their implementation for various location problems are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bello L, Blanquero R, Carrizosa E (2010) On minimax-regret Huff location models. Comput Oper Res 38:90–97

    Article  MathSciNet  Google Scholar 

  2. Berman O, Huang R (2008) The minimum weighted covering location problem with distance constraints. Comput Oper Res 35:356–372

    Article  MATH  MathSciNet  Google Scholar 

  3. Berman O, Drezner Z, Krass D (2011) Big segment small segment global optimization algorithm on networks. Networks 58:1–11

    Article  MATH  MathSciNet  Google Scholar 

  4. Berman O, Drezner Z, Wesolowsky GO (2003) The expropriation location problem. J Oper Res Soc 54:769–776

    Article  MATH  Google Scholar 

  5. Berman O, Drezner Z, Wesolowsky GO (1996) Minimum covering criterion for obnoxious facility location on a network. Networks 18:1–5

    Article  MathSciNet  Google Scholar 

  6. Blanquero R, Carrizosa E (2002) A D.C. biobjective location model. J Global Optim 23:139–154

    Article  MATH  MathSciNet  Google Scholar 

  7. Blanquero R, Carrizosa E, Hansen P (2009) Locating objects in the plane using global optimization techniques. Math Oper Res 34:837–858

    Article  MATH  MathSciNet  Google Scholar 

  8. Blanquero R, Carrizosa E (2009) Continuous location problems and big triangle small triangle: constructing better bounds. J Global Optim 45:389–402

    Article  MATH  MathSciNet  Google Scholar 

  9. Chen PC, Hansen P, Jaumard B, Tuy H (1998) Solution of the multisource Weber and conditional Weber problems by D.-C. programming. Oper Res 46:548–562

    Article  MATH  MathSciNet  Google Scholar 

  10. Daskin MS (1995) Network and discrete location: models, algorithms, and applications. Wiley New York, NY

    Book  MATH  Google Scholar 

  11. Drezner T, Drezner Z (2004) Finding the optimal solution to the Huff competitive location model. CMS 1:193–208

    Article  MATH  Google Scholar 

  12. Drezner T, Drezner Z (2007) Equity models in planar location. CMS 4:1–16

    Article  MATH  MathSciNet  Google Scholar 

  13. Drezner T, Drezner Z (2008) Lost demand in a competitive environment. J Oper Res Soc 59:362–371

    Article  MATH  Google Scholar 

  14. Drezner T, Drezner Z (2011) A note on equity across groups in facility location. Nav Res Logist 58:705–711

    MATH  MathSciNet  Google Scholar 

  15. Drezner T, Drezner Z (2011) The Weber location problem: the threshold objective. INFOR 49:212–220

    MathSciNet  Google Scholar 

  16. Drezner T, Drezner Z, Scott CH (2009) Location of a facility minimizing nuisance to or from a planar network. Comput Oper Res 36:135–148

    Article  MATH  MathSciNet  Google Scholar 

  17. Drezner T, Drezner Z, Wesolowsky GO (2009) Location with acceleration–deceleration distance. Eur J Oper Res 198:157–164

    Article  MATH  MathSciNet  Google Scholar 

  18. Drezner T, Drezner Z, Guyse J (2009) Equitable service by a facility: minimizing the Gini coefficient. Comput Oper Res 36:3240–3246

    Article  MATH  Google Scholar 

  19. Drezner T, Drezner Z, Shiode S (2002) A threshold satisfying competitive location model. J Reg Sci 42:287–299

    Article  Google Scholar 

  20. Drezner T, Drezner Z, Goldstein Z (2010) A stochastic gradual cover location problem. Nav Res Logist 57:367–372

    MATH  MathSciNet  Google Scholar 

  21. Drezner Z (2007) A general global optimization approach for solving location problems in the plane. J Global Optim 37:305–319

    Article  MATH  MathSciNet  Google Scholar 

  22. Drezner Z, Suzuki A (2004) The big triangle small triangle method for the solution of non-convex facility location problems. Oper Res 52:128–135

    Article  MATH  Google Scholar 

  23. Drezner Z, Scott CH (2010) Optimizing the location of a production firm. Netw Spat Econ 10:411–425

    Article  MATH  MathSciNet  Google Scholar 

  24. Drezner Z, Scott CH (2006) Locating a service facility with some unserviced demand. IMA J Manag Math 17:359–371

    Article  MATH  MathSciNet  Google Scholar 

  25. Drezner Z, Wesolowsky GO (1991) The Weber problem on the plane with some negative weights. Inf Syst Oper Res 29:87–99

    MATH  Google Scholar 

  26. Drezner Z, Brimberg J (2011) Fitting concentric circles to measurements. under review

  27. Drezner Z, Nickel S (2009) Constructing a DC decomposition for ordered median problems. J Global Optim 45:187–201

    Article  MATH  MathSciNet  Google Scholar 

  28. Drezner Z, Nickel S (2009) Solving the ordered one-median problem in the plane. Eur J Oper Res 195:46–61

    Article  MATH  MathSciNet  Google Scholar 

  29. Drezner Z, Mehrez A, Wesolowsky GO (1991) The facility location problem with limited distances. Transp Sci 25:183–187

    Article  MATH  Google Scholar 

  30. Drezner Z, Scott CH, Song JS (2003) The central warehouse location problem revisited. IMA J Manag Math 14:321–336

    Article  MATH  MathSciNet  Google Scholar 

  31. Drezner Z, Wesolowsky GO, Drezner T (2004) The gradual covering problem. Nav Res Logist 51:841–855

    Article  MATH  MathSciNet  Google Scholar 

  32. Drezner Z, Klamroth K, Schöbel A, Wesolowsky GO (2002) The Weber Problem. In: Drezner Z, Hamacher H (eds) Facility location: applications and theory. Springer, Berlin, pp 1–36

    Chapter  Google Scholar 

  33. Drezner Z, Steiner S, Wesolowsky GO (2002) On the circle closest to a set of points. Comput Oper Res 29:637–650

    Article  MATH  MathSciNet  Google Scholar 

  34. Fernandez J, Pelegrin B, Plastria F, Toth B (2007) Planar location and design of a new facility with inner and outer competition: an interval lexicographical-like solution procedure. Netw Spat Econ 7:19–44

    Article  MATH  MathSciNet  Google Scholar 

  35. Fernandez J, Toth B (2009) Obtaining the efficient set of nonlinear biobjective optimization problems via interval branch-and-bound methods. Comput Optim Appl 42:393–419

    Article  MATH  MathSciNet  Google Scholar 

  36. Grzybowski J, Nickel S, Pallaschke D, Urbanski R (2011) Ordered median functions and symmetries. Optimization 60:801–811

    Article  MATH  MathSciNet  Google Scholar 

  37. Hansen P, Peeters D, Thisse J (1981) On the location of an obnoxious facility. Sistemi Urbani 3:299–317

    Google Scholar 

  38. Horst R, Phong TQ, Thoai NV, de Vries J (1991) On solving a d.c. programming problem by a sequence of linear programs. J Global Optim 1:183–203

    Article  MATH  MathSciNet  Google Scholar 

  39. Horst R, Thoai NV (1999) DC programming: overview. J Optim Theory Appl 103:1–43

    Article  MathSciNet  Google Scholar 

  40. Huff DL (1964) Defining and estimating a trade area. J Mark 28:34–38

    Article  Google Scholar 

  41. Huff DL (1966) A programmed solution for approximating an optimum retail location. Land Econ 42:293–303

    Article  Google Scholar 

  42. Kalsch MT, Drezner Z (2010) Solving scheduling and location problems in the plane simultaneously. Comput Oper Res 37:256–264

    Article  MATH  MathSciNet  Google Scholar 

  43. Lee DT, Schachter BJ (1980) Two algorithms for constructing a Delaunay triangulation. Int J Parallel Prog 9:219–242

    MATH  MathSciNet  Google Scholar 

  44. Lozano AJ, Mesa JA, Plastria F (2010) Finding an Euclidean anti-k-centrum location of a set of points. Comput Oper Res 37:292–301

    Article  MATH  MathSciNet  Google Scholar 

  45. Maranas CD, Floudas CA (1994) A global optimization method for Weber’s problem with attraction and repulsion. In: Hager WW, Hearn DW, Pardalos PM (eds) Large scale optimization: state of the art. Kluwer, Dordrecht

    Google Scholar 

  46. Nickel S, Puerto J (2005) Facility location—a unified approach. Springer-Verlag, Berlin

    Google Scholar 

  47. Plastria F (1992) GBSSS, the generalized big square small square method for planar single facility location. Eur J Oper Res 62:163–174

    Article  MATH  Google Scholar 

  48. Rodrıguez-Chıa AM, Espejo I, Drezner Z (2010) On solving the planar k-centrum problem with Euclidean distances. Eur J Oper Res 207:1169–1186

    Article  MATH  Google Scholar 

  49. Schöbel A, Scholz D (2010) The big cube small cube solution method for multidimensional facility location problems. Comput Oper Res 37:115–122

    Article  MATH  MathSciNet  Google Scholar 

  50. Scholz D (2011) Geometric branch and bound methods in global optimization: theory and applications to facility location problems. Springer, Berlin

    Google Scholar 

  51. Scholz D, Schöbel A (2010) The theoretical and empirical rate of convergence for geometric branch-and-bound methods. J Global Optim 48(3):473–495

    Article  MATH  MathSciNet  Google Scholar 

  52. Tóth B, Fernández J, Pelegrín B, Plastria F (2009) Sequential versus simultaneous approach in the location and design of two new facilities using planar Huff-like models. Comput Oper Res 36:1393–1405

    Article  MATH  Google Scholar 

  53. Tuy H, Al-Khayyal F, Zhou F (1995) A D.C. optimization method for single facility location problems. J Global Optim 7:209–227

    Article  MATH  MathSciNet  Google Scholar 

  54. Wesolowsky GO (1993) The Weber problem: history and perspectives. Locat Sci 1:5–23

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zvi Drezner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drezner, Z. Solving planar location problems by global optimization. Logist. Res. 6, 17–23 (2013). https://doi.org/10.1007/s12159-012-0093-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12159-012-0093-x

Keywords

Navigation