Skip to main content
Log in

Matching numbers in fuzzy graphs

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

The present study aims to introduce new methods to achieve optimal matching in fuzzy graphs and classify the fuzzy sizes of the edges and vertices of a matching called “matching number”. Matching numbers in a fuzzy graph are not only a direct tool in improving existing matching optimization algorithms, but also can be used to build optimization algorithms based on the vertices of a matching. Thus, introduce the properties of matching numbers which are useful in constructing and solving edge-fuzzy and vertex-fuzzy maximization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Abdulkadiroglu, A., Pathak, P.A., Roth, A.E., Sonmez, T.: The Boston public school match. Am. Econ. Rev. 95, 368–371 (2005)

    Article  Google Scholar 

  2. Akaiyama, J., Egawa, Y., Enomoto, H.: Graph Theory and Applications. Elsevier, Amsterdam (1988)

    Google Scholar 

  3. Akram, M., Sattar, A.: Competition graphs under complex Pythagorean fuzzy information. J. Appl. Math. Comput. 63, 543–583 (2020)

    Article  MathSciNet  Google Scholar 

  4. Akram, M., Saleem, D., Davvaz, B.: Energy of double dominating bipolar fuzzy graphs. J. Appl. Math. Comput. 16, 219–234 (2019)

    Article  MathSciNet  Google Scholar 

  5. Biggs, N.: Algebraic Graph Theory. Cambridge University Press, London (1974)

    Book  Google Scholar 

  6. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. Elsevier, New York (1976)

    Book  Google Scholar 

  7. Borzooei, R.A., Rashmanlou, H.: Ring sum in product intuitionistic fuzzy graphs. J. Adv. Res. Pure Math. 7(1), 16–31 (2015)

    Article  MathSciNet  Google Scholar 

  8. Borzooei, R.A., Rashmanlou, H.: Semi global domination sets in vague graphs with application. J. Intell. Fuzzy Syst. 30(6), 3645–3652 (2016)

    Article  Google Scholar 

  9. Gale, D., Shapley, L.S.: College admissions and stability of marriage. Am. Math. Mon. 69, 9–15 (1962)

    Article  MathSciNet  Google Scholar 

  10. Gao, H., Schmidt, A., Gupta, A., Luksch, P.: A Graph-matching based Intra-node Load balancing Methodology for clusters of SMPs. In: Proceedings of the 7th World Multiconference on Systems, Cubernetics and Informatics (2003)

  11. Huan, L.J., Yazdanifard, R.: The difference of conflict management styles and conflict resolution in workplace. Bus. Entrep. J. 1(1), 141–155 (2012)

    Google Scholar 

  12. Hyde, M., Jappinen, P., Theorell, T., Oxenstierna, G.: Workplace conflict resolution and the health of employees in the Swedish and Finnish units of an industrial company. Soc. Sci. Med. 63(8), 2218–2227 (2006)

    Article  Google Scholar 

  13. Kaufmann, A.: Introduction a la Theorie des Sous-Ensembles Flous. Masson, Paris (1975)

    MATH  Google Scholar 

  14. March, J.G., Simon, H.A.: Organizations, 2nd edn. Wiley, New York (1993)

    Google Scholar 

  15. Malik, M.A., Sarwar, M.: On the metric dimension of two families of convex polytopes. Afr. Math. 27, 229–238 (2016)

    Article  MathSciNet  Google Scholar 

  16. Mathew, S., Mordeson, J.N., Malik, D.S.: Fuzzy Graph Theory. Springer, Cham (2018)

    Book  Google Scholar 

  17. Mendelsohn, N.S., Dulmage, A.L.: Some generalizations of the problem of distinct representatives. Can. J. Math. 10, 230–241 (1958)

    Article  MathSciNet  Google Scholar 

  18. Mohan, R., Gupta, A.: Graph matching algorithm for task assignment problem. Int. J. Comput. Sci. Eng. Appl. 1(6), 105–118 (2011)

    Google Scholar 

  19. Mulmuley, K., Vazirani, U., Vazirani, V.: Matching is as easy as matrix inversion. In: Proceedings of the Nineteenth Annual ACM Conference on Theory of Computing, pp. 345–354 (1987)

  20. Nagoor Gani, A., Basheer Ahamed, M.: Order and size in fuzzy graph. Bull. Pure Appl. Sci. 22E(1), 145–148 (2003)

    MathSciNet  MATH  Google Scholar 

  21. Radha, K., Kumaravel, N.: On edge regular fuzzy graphs. IJMA 5(9), 100–111 (2014)

    Google Scholar 

  22. Ramakrishnan, P.V., Vaidyanathan, M.: Matching in fuzzy graphs. In: Proceedings of National Conference on Discrete Mathematics and its Applications (2007)

  23. Rosenfeld, A.: Fuzzy Graphs, Fuzzy Sets and Their Applications to Cognitive and Decision Processes, pp. 77–95. Academic Press, New York (1975)

    Book  Google Scholar 

  24. Sarwar, M., Akram, M., Ali, U.: Double dominating energy of m-polar fuzzy graphs. J. Intell. Fuzzy Syst. 38(2), 1997–2008 (2020)

    Article  Google Scholar 

  25. Sarwar, M., Akram, M.: Novel applications of m-Polar fuzzy concept lattice. New Math. Nat. Comput. 13(3), 261–287 (2017)

    Article  MathSciNet  Google Scholar 

  26. Sarwar, M., Akram, M.: Bipolar fuzzy circuits with applications. J. Intell. Fuzzy Syst. 34(1), 547–558 (2018)

    Article  Google Scholar 

  27. Sarwar, M., Akram, M., Zafar, F.: Decision making approach based on competition graphs and extended TOPSIS method under bipolar fuzzy environment. Math. Comput. Appl. 23(4), 1–17 (2018)

    MathSciNet  Google Scholar 

  28. Sarwar, M., Akram, M., Alshehri, N.O.: A new method to decision-making with fuzzy competition hypergraphs. Symmetry 10(9), 404 (2018)

    Article  Google Scholar 

  29. Seethalakshmi, R., Gnanajothi, R.B.: A note on perfect fuzzy matching. Int. J. Pure Appl. Math. 94(20), 155–161 (2014)

    Google Scholar 

  30. Shen, C.C., Tsai, W.H.: A graph matching approach to optimal task assignment in distributed computing systems using a minimax criterion. IEEE Trans. Comput. 34(3), 197–203 (1958)

    Google Scholar 

  31. Somasundaram, A., Somasundaram, S.: Domination in fuzzy graphs. Pattern Recogn. Lett. 19, 787–791 (1998)

    Article  Google Scholar 

  32. Spencer, T.H., Mayr, E.W.: Node weighted matching, In: Proceedings of the 11th Annual International Colloquium on Automata, Languages, and Programming, LNCS 172, pp. 454–464 (1984)

  33. Vazirani, V.V.: A theory of alternating paths and blossoms for proving correctness of the \(O(\sqrt{v}E)\) general graph maximum matching algorithm. Combinatorica 14(1), 71–109 (1994)

    Article  MathSciNet  Google Scholar 

  34. Wattenhofer, M., Wattenhofer, R.: Distributed weighted matching. In: Guerraoui, R. (ed.) Distributed Computing. DISC 2004. Lecture Notes in Computer Science, vol. 3274. Springer, Berlin (2014)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Borzooei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalili, M., Borzooei, R.A. & Deldar, M. Matching numbers in fuzzy graphs. J. Appl. Math. Comput. 67, 1–22 (2021). https://doi.org/10.1007/s12190-020-01463-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-020-01463-z

Keywords

Navigation