Skip to main content
Log in

Satellite image compression by concurrent representations of wavelet blocks

  • Published:
annals of telecommunications - annales des télécommunications Aims and scope Submit manuscript

Abstract

This paper proposes a complete compression and coding scheme for on-board satellite applications considering the main on-board constraints: low computational power and easy bit rate control. The proposed coding scheme improves the performance of the current Consultative Committee for Space Data Systems (CCSDS) recommendation for a low additional complexity. We consider post-transforms in the wavelet domain, select the best representation for each block of wavelet coefficients, and encode it into an embedded bit stream. After applying a classical wavelet transform of the image, several concurrent representations of blocks of wavelet coefficients are generated. The best representations are then selected according to a rate-distortion criterion. Finally, a specific bit-plane encoder derived from the CCSDS recommendation produces an embedded bit stream ensuring the easy rate control required. In this article, both the post-transforms and the best representation selection have been adapted to the low complexity constraint, and the CCSDS coder has been modified to compress post-transformed representations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. http://cwe.ccsds.org/sls/docs/SLS-DC/BB122TestImage/ImageLib.zip

References

  1. CCSDS (2005) Image data compression recommended standard—CCSDS 122.0-B-1 Blue Book. http://public.ccsds.org/publications/archive/122x0b1c2.pdf

  2. CCSDS (2007) Image data compression informational report—CCSDS 120.1-G-1 Green Book. http://public.ccsds.org/publications/archive/120x1g1e1.pdf

  3. Chen S, Donoho D, Saunders M (1998) Atomic decomposition by basis pursuit. SIAM J Sci Comput 20(1):33–61. doi:10.1137/S1064827596304010

    Article  MathSciNet  Google Scholar 

  4. Delaunay X, Chabert M, Charvillat V, Morin G (2010) Satellite image compression by post-transforms in the wavelet domain. Elsevier Signal Process 90(2):599–610. doi:10.1016/j.sigpro.2009.07.024

    MATH  Google Scholar 

  5. Delaunay X, Christophe E, Thiebaut C, Charvillat V (2008) Best post-transforms selection in a rate distortion sense. In: ICIP’08. IEEE, San Diego, CA, USA, pp 2896–2899. doi:10.1109/ICIP.2008.4712400

  6. Gutro R, Kingery K (2008) NASA Goddard and University of Idaho Create Solutions for 2 NASA Missions. http://www.nasa.gov/centers/goddard/news/topstory/2008/technology_2.html

  7. Krommweh J (2009) Image approximation by adaptive tetrolet transform. In: 8th international conference on sampling theory and applications, SAMPTA’09, Marseille, France. http://www.latp.univ-mrs.fr/SAMPTA09/FinalSubmissions/102.pdf

  8. Le Pennec E, Mallat S. :(2005) Sparse geometric image representations with bandelets. IEEE Trans Image Process 14(4):423–438. doi:10.2209/TIP.2005.843753

    Article  MathSciNet  Google Scholar 

  9. Peyré G, Mallat S (2005) Discrete bandelets with geometric orthogonal filters. In: IEEE international conference on image processing, 2005. (ICIP 2005), vol I. IEEE, Genova Italie, pp 65–68. doi:10.1109/ICIP.2005.1529688

  10. Ramchandran K, Vetterli M (1993) Best wavelet packet bases in a rate-distortion sense. IEEE Trans Image Process 2(2):160–175 doi:10.1109/83.217221

    Article  Google Scholar 

  11. Robert A, Amonou I, Pesquet-Popescu B (2006) Improving DCT-based coders through block oriented transforms. Lect Notes Comput Sci 4179:375. doi:10.1007/11864349_34

    Article  Google Scholar 

  12. Shoham Y, Gersho A (1988) Efficient bit allocation for an arbitrary set of quantizers. IEEE Trans Acoust Speech Signal Process 36(9):1445–1453. doi:10.1109/29.90373

    Article  MATH  Google Scholar 

  13. Van Buren D (2005) A high-rate JPEG2000 compression system for space. In: IEEE aerospace conference, pp 1–7. doi:10.1109/AERO.2005.1559540

  14. Yeh P, Armbruster P, Kiely A, Masschelein B, Moury G, Schaefer C, Thiebaut C (2005) The new CCSDS image compression recommendation. In: IEEE aerospace conference, pp 4138–4145. doi:10.1109/AERO.2005.1559719

  15. Yua G, Vladimirovaa T, Sweetinga MN (2009) Image compression systems on board satellites. Elsevier Acta Astron 64:988–1005. doi:10.1016/j.actaastro.2008.12.006

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Charvillat.

Additional information

This work has been carried out under the financial support of the French space agency CNES (www.cnes.fr) and NOVELTIS company (www.noveltis.fr).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delaunay, X., Chabert, M., Charvillat, V. et al. Satellite image compression by concurrent representations of wavelet blocks. Ann. Telecommun. 67, 71–80 (2012). https://doi.org/10.1007/s12243-011-0252-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12243-011-0252-0

Keywords

Navigation