Skip to main content
Log in

A noise reduction orthogonal multi-user CDSK communication system based on frequency domain processing

  • Published:
Annals of Telecommunications Aims and scope Submit manuscript

Abstract

In this paper, a noise reduction orthogonal multi-user correlated delay shift keying (NR-OMU-CDSK) noncoherent communication system based on frequency domain processing is proposed. In NR-OMU-CDSK, chaotic signal generated in frequency domain is converted to time domain through inverse Fourier transform, and then the real and imaginary components of the time domain signal are simultaneously modulated to two phase-orthogonal branches. The transmission rate and security performance of each branch are further improved by switches and Walsh code. In the receiver, moving average filter is used to reduce the variance of interference term in the decision variable, and information bits are obtained through relevant demodulation. The bit error rate (BER) performance of NR-OMU-CDSK is evaluated in AWGN channel and multipath Rayleigh fading channel. The research results show that the theoretical BER is basically consistent with the simulation results. The transmission rate of NR-OMU-CDSK is improved by 4N×100% (N is the number of users), and the signal-to-noise ratio is improved by nearly 4dB for the same BER performance, when NR-OMU-CDSK is compared with conventional CDSK in AWGN channel. Moreover, compared to other multi-user systems, this system has also obvious advantages in various system performance and avoids RF delay line problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Jiang G, Yang H, Duan J (2015) Chaotic digital modulation scheme and performance analysis. Science Press, Beijing

    Google Scholar 

  2. Guixian C, Lin W, Qiwang C et al (2018) Design and performance analysis of generalized carrier index M-ary differential chaos shift keying modulation. IET Commun 12(11):1324–1331

    Article  Google Scholar 

  3. Kaddoum G, Tran HV, Kong L (2016) Design of simultaneous wireless information and power transfer scheme for short reference DCSK communication systems. IEEE Trans Commun 65(1):431–433

    Google Scholar 

  4. Hongying D, Weikai X (2015) Optimal sub-carriers power allocation in MC-DCSK communication system. J Chongqing Univ Posts Telecom 027(002):170–173

    Google Scholar 

  5. Li S, Zhao Y, Wu Z (2015) Design and analysis of an OFDM-based differential chaos shift keying communication system. J Commun 10(3):199–205

    Article  Google Scholar 

  6. Xiu CB, Zhou RX, Liu YX (2020) New chaotic memristive cellular neural network and its application in secure communication system. Chaos, Solitons Fractals 141:110316

    Article  MathSciNet  Google Scholar 

  7. Zhang F, Leng S, Li Z, Jiang C (2020) Time delay complex chen chaotic system and secure communication scheme for wireless body area networks. Entropy 22(12):1420

    Article  MathSciNet  Google Scholar 

  8. Zhao YN, Zhang W, Su HS et al (2018) Observer-based synchronization of chaotic systems satisfying incremental quadratic constraints and its application in secure communication. IEEE Transac Syst Man Cyber Syst 99:1–12

    Google Scholar 

  9. Abbasinezhad-Mood D, Ostad-Sharif A, Mazinani SM et al (2020) Provably secure escrow-less Chebyshev chaotic map-based key agreement protocol for vehicle to grid connections with privacy protection. IEEE Transac Industr Inform 99:1

    Google Scholar 

  10. Lau FCM (2003) On optimal detection of noncoherent chaos-shift-keying signals in a noisy environment. Int J Bifurc Chaos 13(6):1587–1597

    Article  Google Scholar 

  11. Yang H, Tang WKS, Chen G et al (2017) Multi-carrier chaos shift keying: system design and performance analysis. IEEE Transac Circ Syst I Reg Papers 8:1–13

    Google Scholar 

  12. Yang H, Jiang G, Duan J (2015) High efficiency differential chaos shift keying modulation scheme without intra-signal interference. J Commun 36(006):88–93

    Google Scholar 

  13. Chen P, Wang L, Lau FCM (2013) One analog STBC-DCSK transmission scheme not requiring channel state information. IEEE Transac Circ Syst I Reg Papers 60(4):1027–1037

    Article  Google Scholar 

  14. Kaddoum G, Gagnon F (2013) Performance analysis of STBC-CSK communication system over slow fading channel. Signal Process 93(7):2055–2060

    Article  Google Scholar 

  15. Wang Z, Li P, Jia Z, Wang W, Xu B, Shore KA, Wang Y (2021) Synchronization of polarization chaos in mutually coupled free-running VCSELs. Opt Express 29(12):17940–17950

    Article  Google Scholar 

  16. Chang SC (2021) Bifurcation, routes to chaos, and synchronized chaos of electromagnetic valve train in camless engines. Int J Nonlin Sci Numer Simul 22(3-4):447–460

    Article  MathSciNet  Google Scholar 

  17. Kuate PDK, Lai Q, Fotsin H (2019) Dynamics, synchronization and electronic implementations of a new Lorenz-like chaotic system with nonhyperbolic equilibria. Int J Bifurc Chaos 29(14):1950197

    Article  MathSciNet  Google Scholar 

  18. Herceg M, Kaddoum G, Vranjes D et al (2018) Permutation index DCSK modulation technique for secure multi-user high-data-rate communication systems. IEEE Trans Veh Technol 67(4):2997–3011

    Article  Google Scholar 

  19. Kolumban G, Kis G (2000) Multipath performance of FM-DCSK chaotic communications system. Circuits and Systems, 2000. In: Proceedings. ISCAS 2000 Geneva. The 2000 IEEE International Symposium on. IEEE

    Google Scholar 

  20. Rushforth CK (1964) Transmitted-reference techniques for random or unknown channels. IEEE Trans Inf Theory 9(1):39–42

    Article  Google Scholar 

  21. Tam WM, Lau FCM, Tse CK (2006) Generalized correlation-delay-shift-keying scheme for noncoherent chaos-based communication systems. IEEE Transac Circ Syst I: Reg Papers 53(3):712–721

    Article  Google Scholar 

  22. Galias Z, Maggio GM (2002) Quadrature chaos-shift keying: theory and performance analysis. IEEE Transac Circ Syst I Fund Theor Applic 48(12):1510–1519

    Article  MathSciNet  Google Scholar 

  23. Yang H, Xu SY, Jiang GP (2021) A high data rate solution for differential chaos shift keying based on carrier index modulation. IEEE Transac Circ Syst II-Expr Briefs 68(4):1487–1491

    Google Scholar 

  24. Cai XM, Xu WK, Lau FCM et al (2020) Joint carrier-code index modulation aided M-Ary differential chaos shift keying system. IEEE Trans Veh Technol 69(12):15486–15499

    Article  Google Scholar 

  25. Zhang G, Wang CG, Zhang TQ (2017) Performance analyzes for MU-DCSK system based on orthogonal chaotic carrier. Systems Engineering and Electronic 39(2):431–436

    Google Scholar 

  26. Yang H (2012) High-efficiency differential-chaos-shift-keying scheme for chaos-based noncoherent communication. IEEE Transac Circ Syst II Expr Briefs 59(5):312–316

    Google Scholar 

  27. Yang H, Jiang GP, Duan J (2014) Phase-separated DCSK: a simple delay-component-free solution for chaotic communications. IEEE Transac Circ Syst II Expr Briefs 61(12):967–971

    Google Scholar 

  28. Kaddoum G, Soujeri E (2016) NR-DCSK: a noise reduction differential chaos shift keying system. IEEE Transac Circ Syst II Expr Briefs 63(7):648–652

    Google Scholar 

  29. Xu WK, Wang L, Kolumbán G (2011) A novel differential chaos shift keying modulation scheme. Int J Bifurc Chaos 21(3):1102882

    Article  MathSciNet  Google Scholar 

  30. Li N, Martínez-Ortega J-F, Díaz VH et al (2018) A new high-efficiency multilevel frequency-modulation different chaos shift keying communication system. IEEE Syst J 12(4):3334–3345

    Article  Google Scholar 

  31. Zhang G, Zhao C, Zhang T (2019) Performance analysis of MISO-MU-OHE-DCSK system over Rayleigh fading channels. AEUE-Int J Electron Communic 115:153048

    Article  Google Scholar 

  32. Gang Z, Lianbing X, Tianqi Z (2019) NISI-MU-CDSK communication system based on frequency division multiplexing. J Shanghai Jiaotong Univ 53(05):575–583

    Google Scholar 

  33. Sundersingh DY (2010) Frequency domain processing-based chaos communication for cognitive radio. PhD dissertation, Wright State University, Dayton

    Google Scholar 

  34. Quyen NX (2017) On the study of a quadrature DCSK modulation scheme for cognitive radio. Int J Bifurc Chaos 27(9):1750135

    Article  MathSciNet  Google Scholar 

  35. Cai GF, Wang L, Chen GR (2016) Capacity of the non-coherent DCSK system over Rayleigh fading channel. IET Commun 10(18):2663–2669

    Article  Google Scholar 

  36. Proakis JG (2001) Digital communications. McGraw-Hill, New York

    MATH  Google Scholar 

Download references

Acknowledgements

The valuable comments and suggestions from anonymous reviewers are sincerely appreciated which helps to improve our study in the future.

Funding

This work was supported by the National Natural Science Foundation of China (No. 61771085) and the Research Project of Chongqing Educational Commission (KJ1600407, KJQN201900601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangtao Dong.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Dong, J. & He, L. A noise reduction orthogonal multi-user CDSK communication system based on frequency domain processing. Ann. Telecommun. 77, 237–250 (2022). https://doi.org/10.1007/s12243-021-00873-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12243-021-00873-9

Keywords

Navigation