Skip to main content
Log in

Hybrid immune algorithm with Lamarckian local search for multi-objective optimization

  • Regular Research Paper
  • Published:
Memetic Computing Aims and scope Submit manuscript

Abstract

Lamarckian learning has been introduced into evolutionary computation as local search mechanism. The relevant research topic, memetic computation, has received significant amount of interests. In this study, a novel Lamarckian learning strategy is designed for improving the Nondominated Neighbor Immune Algorithm, a novel hybrid multi-objective optimization algorithm, Multi-objective Lamarckian Immune Algorithm (MLIA), is proposed. The Lamarckian learning performs a greedy search which proceeds towards the goal along the direction obtained by Tchebycheff approach and generates the improved progenies or improved decision vectors, so single individual will be optimized locally and the newcomers yield an enhanced exploitation around the nondominated individuals in less-crowded regions of the current trade-off front. Simulation results based on twelve benchmark problems show that MLIA outperforms the original immune algorithm and NSGA-II in approximating Pareto-optimal front in most of the test problems. When compared with the state of the art algorithm MOEA/D, MLIA shows better performance in terms of the coverage of two sets metric, although it is laggard in the hypervolume metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bandyopadhyay S, Saha S, Maulik U, Deb K (2008) A simulated annealing based multi-objective optimization algorithm: AMOSA. IEEE Trans Evol Comput 12(3): 269–283

    Article  Google Scholar 

  2. Cochrane E (1997) Viva Lamarck: a brief history of the inheritance of acquired characteristics. MIT Press, Cambridge

    Google Scholar 

  3. Coello Coello CA (2005) Recent trends in evolutionary multiobjective optimization. In: Evolutionary multiobjective optimization: theoretical advances and applications. Springer, Berlin, pp 7–32

  4. Coello Coello CA, Pulido GT (2001) Multi-objective optimization using a micro-genetic algorithm. In: Proceedings of genetic and evolutionary computation conference, GECCO 2001, pp 274–282

  5. Coello Coello CA, Pulido GT (2004) Lechuga M S. Handing multiple objectives with particle swarm optimization. IEEE Trans Evol Comput 8(3):256–279

    Article  Google Scholar 

  6. Coello Coello CA, Van Veldhuizen DA, Lamont GB (2002) Evolutionary algorithms for solving multi-objective problems. Kluwer, New York

    MATH  Google Scholar 

  7. Corne DW, Jerram NR, Knowles JD, Oates MJ (2001) PESA-II: region-based selection in evolutionary multi-objective optimization. In: Proceedings of the genetic and evolutionary computation conference, GECCO 2001, pp 283–290

  8. Corne DW, Knowles JD, Oates MJ (2000) The Pareto-envelope based selection algorithm for multi-objective optimization. In: Parallel problem solving from nature, PPSN VI, pp 869–878

  9. Dawkins R (1996) The blind watchmaker. W. W. Norton & Company Inc., New York

    Google Scholar 

  10. Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, Chichester

    MATH  Google Scholar 

  11. Deb K, Beyer HG (2001) Self-adaptive genetic algorithms with simulated binary crossover. Evol Comput 9(2): 197–221

    Article  Google Scholar 

  12. Deb K, Jain S (2002) Running performance metrics for evolutionary multiobjective optimization. Technical report 2002004, KanGAL, Indian Institute of Technology, Kanpur 208016, India

  13. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2): 182–197

    Article  Google Scholar 

  14. Deb K, Thiele L, Laumanns M, Zitzler E (2002) Scalable multi-objective optimization test problems. In: Proceedings of the IEEE congress on evolutionary computation, CEC2002, pp 825–830

  15. de Castro L, Timmis J (2002) An artificial immune network for multimodal function optimization. In: Proceedings of the IEEE congress on evolutionary computation, CEC 2002, pp 699–704

  16. Freschi F, Repetto M (2006) VIS: An artificial immune network for multi-objective optimization. Eng Optim 38(8): 975–996

    Article  Google Scholar 

  17. Gong MG, Jiao LC, Du HF, Bo LF (2008) Multiobjective immune algorithm with nondominated neighbor-based selection. Evol Comput 16(2): 225–255

    Article  Google Scholar 

  18. Gong MG, Jiao LC, Ma WP, Du HF (2008) Multiobjective optimization using an immunodominance and clonal selection inspired algorithm. Sci China: Ser F Inf Sci 51(8): 1064–1082

    Article  MathSciNet  MATH  Google Scholar 

  19. Gould SJ (1980) The Panda’s thumb. W. W. Norton & Company Inc., New York

    Google Scholar 

  20. Hart WE, Belew RK (1996) Optimization with genetic algorithm hybrids that use local search. In: Belew RK, Mitchell M (eds) Adaptive individuals in evolving populations. Addison-Wesley, Reading

    Google Scholar 

  21. Hart WE, Krasnogor N, Smith JE (2005) Recent advances in memetic algorithms. Springer, Berlin

    Book  MATH  Google Scholar 

  22. Hoeffler A, Leysner U, Weidermann J (1973) Optimization of the layout of trusses combining strategies based on Mitchel’s theorem and on biological principles of evolution. In: Proceedings of the second symposium on structural optimization, Milan, Italy

  23. Horn J, Nafpliotis N, Goldberg DE (1993) A niche Pareto genetic algorithm for multi-objective optimization. In: Proceedings of the first IEEE conference on evolutionary computation, pp 82–87

  24. Igel C, Hansen N, Roth S (2007) Covariance matrix adaptation for multi-objective optimization. Evol Comput 15(1): 1–28

    Article  Google Scholar 

  25. Ishibuchi H, Murata T (1998) A multi-objective genetic local search algorithm and its application to flowshop scheduling. IEEE Trans Syst Man Cybern C Appl Rev 28(3): 392–403

    Article  Google Scholar 

  26. Jaszkiewicz A (2002) Genetic local search for multiple objective combinatorial optimization. Eur J Oper Res 137(1): 50–71

    Article  MathSciNet  MATH  Google Scholar 

  27. Jaszkiewicz A (2003) Do multiple-objective metaheuristics deliver on their promises? A computational experiment on the set-covering problem. IEEE Trans Evol Comput 7(2): 133–143

    Article  MathSciNet  Google Scholar 

  28. Jiao LC, Gong MG, Shang RH, Du HF, Lu B (2005) Clonal selection with immune dominance and anergy based multiobjective optimization. In: Proceedings of the third international conference on evolutionary multi-criterion optimization, EMO 2005, Guanajuato, Mexico (Lecture Notes in Computer Science), pp 474–489. Springer, 9–11 March 2005

  29. Khare V, Yao X, Deb K (2003) Performance scaling of multi-objective evolutionary algorithms. In: Evolutionary multi-criterion optimization, EMO 2003, pp 376–390

  30. Kicinger R, Arciszewski T (2006) Empirical analysis of memetic algorithms for conceptual design of steel structural systems in tall building. Adv Eng Struct Mech Constr 140(3):277–288

    Article  Google Scholar 

  31. Knowles JD, Corne DW (2000) Approximating the non-dominated front using the Pareto archived evolution strategy. Evol Comput 8(2): 149–172

    Article  Google Scholar 

  32. Knowles JD, Corne DW (2000) M-PAES: A memetic algorithm for multiobjective optimization. In: Proceedings of the IEEE congress on evolutionary computation, CEC 2000, pp 325–332

  33. Knowles J, Thiele L, Zitzler E (2006) A tutorial on the performance assessment of stochastic multiobjective optimizers. Technical report 214, computer engineering and networks laboratory (TIK), Swiss federal institute of technology (ETH), Zurich, Switzerland

  34. Kursawe F (1991) A variant of evolution strategies for vector optimization. In: Parallel problem solving from nature, PPSN I, pp 193–197

  35. Laumanns M, Zitzler E, Thiele L (2000) A unified model for multiobjective evolutionary algorithms with elitism. In: Proceeding of the IEEE congress on evolutionary computation, CEC 2000, pp 46–53

  36. Le MN, Ong YS, Jin Y, Sendhoff B (2009) Lamarckian memetic algorithms: local optimum and connectivity structure analysis. Memetic Comput 1(3): 175–190

    Article  Google Scholar 

  37. Liu DS, Tan KC, Goh CK, Ho WK (2007) A multiobjective memetic algorithm based on particle swarm optimization. IEEE Trans Syst Man Cybern B 37(1): 42–50

    Article  Google Scholar 

  38. Luh GC, Chueh CH, Liu WW (2003) MOIA: multi-objective immune algorithm. Eng Optim 35(2): 143–164

    Article  MathSciNet  Google Scholar 

  39. McGill R, Tukey J, Larsen W (1978) Variations of boxplots. Am Stat 32: 12–16

    Article  Google Scholar 

  40. Meuth R, Lim MH, Ong YS, Wunsch DC II (2009) A proposition on memes and meta-memes in computing for higher-order learning. Memetic Comput 1(2): 85–100

    Article  Google Scholar 

  41. Miettinen K (1999) Nonlinear multiobjective optimization. Kluwer, Norwell

    MATH  Google Scholar 

  42. Moscato P (1989) On evolution, search, optimization algorithms and martial arts: towards memetic algorithms. Report 826, Caltech concurrent computation program, California Institute of Technology, Pasadena

  43. Murata T, Ishibuchi H, Tanaka H (1996) Genetic algorithms for flowshop scheduling problems. Comput Ind Eng 30(4): 1061– 1071

    Article  Google Scholar 

  44. Ong YS, Lim MH, Zhu N, Wong KW (2006) Classification of adaptive memetic algorithms: a comparative study. IEEE Trans Syst Man Cybern B 36(1): 141–152

    Article  Google Scholar 

  45. Powell MJD (1998) Direct search algorithms for optimization calculations. Acta Numerica 7: 287–336

    Article  MathSciNet  Google Scholar 

  46. Reeves CR, Yamada T (1998) Genetic algorithms, path relinking and the flowshop sequencing problem. Evol Comput 6(1): 45–60

    Article  Google Scholar 

  47. Schaffer JD (1984) Multiple objective optimization with vector evaluated genetic algorithms. PhD thesis, Vanderbilt University, Nashville, TN

  48. Schott JR (1995) Fault tolerant design using single and multicriteria genetic algorithm optimization. Masters thesis, Massachusetts Institute of Technology, Cambridge, MA

  49. Smith J (2007) Co-evolving memetic algorithms: a review and progress report. IEEE Trans Syst Man Cybern B 37(1): 6–17

    Article  Google Scholar 

  50. Srinivas N, Deb K (1994) Multi-objective optimization using non-dominated sorting in genetic algorithms. Evol Comput 2(3): 221–248

    Article  Google Scholar 

  51. Tan KC, Goh CK, Mamun AA, Ei EZ (2008) An evolutionary artificial immune system for multi-objective optimization. Eur J Oper Res 187(2): 371–392

    Article  MathSciNet  MATH  Google Scholar 

  52. Van Veldhuizen DA, Lamont GB (2000) Multiobjective optimization with messy genetic algorithms. In: Proceedings of the 2000 ACM symposium on applied computing. ACM Press, pp 470– 476

  53. Yoo J, Hajela P (1999) Immune network simulations in multicriterion design. Struct Optim 18(2–3): 85–94

    Google Scholar 

  54. Zhang QF, Li H (2007) MOEA/D: a multi-objective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6): 712–731

    Article  Google Scholar 

  55. Zhang QF, Zhou AM, Jin Y (2008) RM-MEDA: a regularity model based multi-objective estimation of distribution algorithm. IEEE Trans Evol Comput 12(1): 41–63

    Article  Google Scholar 

  56. Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: empirical results. Evol Comput 8(2): 173–195

    Article  Google Scholar 

  57. Zitzler E, Laumanns M, Thiele L (2002) SPEA2: improving the strength Pareto evolutionary algorithm. In: Evolutionary methods for design, optimization and control with applications to industrial problems, Athens, Greece, pp 95–100

  58. Zitzler E, Thiele L (1998) Multiobjective optimization using evolutionary algorithms—a comparative study. In: Parallel problem solving from nature, PPSN V, pp 292–301

  59. Zitzler E, Thiele L (1999) Multi-objective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evol Comput 3(4): 257–271

    Article  Google Scholar 

  60. Zitzler E, Thiele L, Laumanns M, Fonseca CM, da Fonseca VG (2003) Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans Evol Comput 7(2): 117–132

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maoguo Gong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, M., Liu, C., Jiao, L. et al. Hybrid immune algorithm with Lamarckian local search for multi-objective optimization. Memetic Comp. 2, 47–67 (2010). https://doi.org/10.1007/s12293-009-0028-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12293-009-0028-5

Keywords

Navigation