Skip to main content

Advertisement

Log in

Group based Swarm evolution algorithm (GSEA) driven mental task classifier

  • Regular Research Paper
  • Published:
Memetic Computing Aims and scope Submit manuscript

Abstract

Brain computer interface (BCI) system is based on non-invasive electroencephalographic signals. It is an augmented communication channel for disabled persons which translates neural activity from the brain into control signals. In this paper, a novel group based Swarm evolution algorithm (GSEA) driven neural classifier has been proposed to classify mental tasks. These mental tasks consists of left and right hand movement imagination and thinking of word generation. GSEA is a hybrid of swarm intelligence based computational methods with differential evolution based techniques. Hybridization of both algorithms ensures that pitfalls of both are overcome thus enhancing results. A concept of grouping has also been introduced to increase both exploration and exploitation performance of the algorithm. GSEA has been tested on publicly available BCI Competition 3 dataset 5. Experimental results shows that the proposed algorithm exhibits better result than individual swarm or differential search based algorithms and many other algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Amzica F, Steriade M (1998) Electrophysiological correlates of sleep delta waves. Electroencephalogr Clin Neurophysiol 107(2):69–83

    Article  Google Scholar 

  2. Anderson CW, Stolz EA, Shamsunder S (1998) Multivariate autoregressive models for classification of spontaneous electroencephalographic signals during mental tasks. Biomed Eng IEEE Trans 45(3):277–286

    Article  Google Scholar 

  3. Bakan P, Svorad D (1969) Resting EEG alpha and asymmetry of reflective lateral eye movements. Nature 223:975–976

  4. Bishop C (1991) Improving the generalization properties of radial basis function neural networks. Neural Comput 3(4):579–588

    Article  Google Scholar 

  5. Blankertz DB (2005) BCI competition III, final results. http://www.bbci.de/competition/iii/results/. Online. Accessed 25 Feb 2014

  6. Chen AC, Herrmann CS (2001) Perception of pain coincides with the spatial expansion of electroencephalographic dynamics in human subjects. Neurosci Lett 297(3):183–186

    Article  Google Scholar 

  7. Coyle SM, Ward TE, Markham CM (2007) Braincomputer interface using a simplified functional nearinfrared spectroscopy system. J Neural Eng 4(3):219

    Article  Google Scholar 

  8. Delgado Saa JF, Cetin M (2013) Discriminative methods for classification of asynchronous imaginary motor tasks from eeg data. IEEE Trans Neural Syst Rehabil Eng 21(5):716–724

  9. del R Millan J, Mouriño J, Franzé M, Cincotti F, Varsta M, Heikkonen J, Babiloni F (2002) A local neural classifier for the recognition of eeg patterns associated to mental tasks. Neural Netw IEEE Trans 13(3):678–686

  10. del R Millan JMMFFCMVJH J, Babiloni F (2002) A local neural classifier for the recognition of eeg patterns associated to mental tasks. Neural Netw IEEE Trans 13(3):678–686

    Article  Google Scholar 

  11. Diamantaras KI, Kung SY (1996) Principal component neural networks: theory and applications. Wiley, New York

    MATH  Google Scholar 

  12. Duda RO, Hart PE, Stork DG (2012) Pattern classification. Wiley, New York

    Google Scholar 

  13. Galn F, Oliva F, Guardia J (2007) Using mental tasks transitions detection to improve spontaneous mental activity classification. Med Biol Eng Comput 45(6):603–609

    Article  Google Scholar 

  14. Gandelli A, Grimaccia F, Mussetta M, Pirinoli P, Zich RE (2007) Development and validation of different hybridization strategies between ga and pso. In: Evolutionary computation. CEC 2007. IEEE, IEEE congress on, pp 2782–2787

  15. Garrett D, Peterson DA, Anderson CW, Thaut MH (2003) Comparison of linear, nonlinear, and feature selection methods for eeg signal classification. Neural Syst Rehabil Eng IEEE Trans 11(2):141–144

  16. Guger C, Schlogl A, Neuper C, Walterspacher D, Strein T, Pfurtscheller G (2001) Rapid prototyping of an eegbased braincomputer interface (bci). Neural Syst Rehabil Eng IEEE Trans 9(1):49–58

    Article  Google Scholar 

  17. Hao ZF, Guo GH, Huang H (2007) A particle swarm optimization algorithm with differential evolution. In: Machine learning and cybernetics, 2007 international conference on, IEEE, vol 2, pp 1031–1035

  18. Hao ZF, Wang ZG, Huang H (2007) A particle swarm optimization algorithm with crossover operator. In: Machine learning and cybernetics, 2007 international conference on, IEEE, vol 2, pp 1036–1040

  19. He ZL, Wong PK (2004) Exploration vs. exploitation: an empirical test of the ambidexterity hypothesis. Organ Sci 15(4):481–494

    Article  Google Scholar 

  20. Iber C, Medicine AAoS (2007) The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications. American Academy of Sleep Medicine, Darien

    Google Scholar 

  21. Ivanitsky AM, Nikolaev AR, Ivanitsky GA (2001) Cortical connectivity during word association search. Int J Psychophysiol 42(1):35–53

    Article  Google Scholar 

  22. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, Perth, Australia, vol 4, pp 1942–1948

  23. Landis, JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33(1):159–174

  24. Leuthardt EC, Schalk G, Wolpaw JR, Ojemann JG, Moran DW (2004) A braincomputer interface using electrocorticographic signals in humans. J Neural Eng 1(2):63

    Article  Google Scholar 

  25. Li Y, Wen PP (2011) Clustering techniquebased least square support vector machine for eeg signal classification. Comput Methods Programs Biomed 104(3):358–372

    Article  Google Scholar 

  26. Lin CJ, Hsieh MH (2009a) Classification of mental task from eeg data using neural networks based on particle swarm optimization. Neurocomputing 72(4):1121–1130

    Article  Google Scholar 

  27. Logar V, Beli A (2011) Visuomotor tasks in a brain computer interface analysis. Recent advances in brain computer interface systems. InTech, New York, USA

  28. Lotte F, Congedo M, Lcuyer A, Lamarche F, Arnaldi B (2007) A review of classification algorithms for eegbased braincomputer interfaces. J Neural Eng 4:R1–R13

  29. Manganotti P, Gerloff C, Toro C, Katsuta H, Sadato N, Zhuang P, Leocani L, Hallett M (1998) Taskrelated coherence and taskrelated spectral power changes during sequential finger movements. Electroencephalogr Clin Neurophysiol/Electromyogr Mot Control 109(1):50–62

    Article  Google Scholar 

  30. McFarland DJ, McCane LM, David SV, Wolpaw JR (1997) Spatial filter selection for eegbased communication. Electroencephalogr Clin Neurophysiol 103(3):386–394

    Article  Google Scholar 

  31. Mellinger J, Schalk G, Braun C, Preissl H, Rosenstiel W, Birbaumer N, Kbler A (2007) An megbased braincomputer interface (bci). Neuroimage 36(3):581–593

    Article  Google Scholar 

  32. del Milln J (2004) On the need for online learning in braincomputer interfaces. In: Neural networks, 2004. In: Proceedings. 2004 IEEE international joint conference on, IEEE, vol 4, pp 2877–2882

  33. Moore MM (2003) Realworld applications for braincomputer interface technology. Neural Syst Rehabil Eng IEEE Trans 11(2):162–165

    Article  Google Scholar 

  34. Neuper C, Pfurtscheller G (2001) Eventrelated dynamics of cortical rhythms: frequencyspecific features and functional correlates. Int J Psychophysiol 43(1):41–58

    Article  Google Scholar 

  35. Palaniappan R, Paramesran R, Nishida S, Saiwaki N (2002) A new braincomputer interface design using fuzzy artmap. Neural Syst Rehabil Eng IEEE Trans 10(3):140–148

    Article  Google Scholar 

  36. Pfurtscheller G, Andrew C (1999) Eventrelated changes of band power and coherence: methodology and interpretation. J Clin Neurophysiol 16(6):512

    Article  Google Scholar 

  37. Pfurtscheller G, Aranibar A (1979) Evaluation of eventrelated desynchronization (erd) preceding and following voluntary selfpaced movement. Electroencephalogr Clin Neurophysiol 46(2):138–146

    Article  Google Scholar 

  38. Pfurtscheller G, Neuper C, Flotzinger D, Pregenzer M (1997) Eegbased discrimination between imagination of right and left hand movement. Electroencephalogr Clin Neurophysiol 103(6):642–651

    Article  Google Scholar 

  39. Ratnaweera A, Halgamuge S, Watson HC (2004) Selforganizing hierarchical particle swarm optimizer with timevarying acceleration coefficients. Evol Comput IEEE Trans 8(3):240–255

  40. Schnitzler A, Salenius S, Salmelin R, Jousmki V, Hari R (1997) Involvement of primary motor cortex in motor imagery: a neuromagnetic study. Neuroimage 6(3):201–208

  41. Shenoy P, Rao RP (2004) Dynamic bayesian networks for braincomputer interfaces. In: Advances in Neural Information Processing Systems

  42. Sitaram R, Caria A, Veit R, Gaber T, Rota G, Kuebler A, Birbaumer N (2007) Fmri braincomputer interface: a tool for neuroscientific research and treatment. Computat Intell Neurosci 2007:25487. doi:10.1155/2007/25487

  43. Storn R, Price K (1997) Differential evolutiona simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    Article  MATH  MathSciNet  Google Scholar 

  44. Strber D, Herrmann CS (2002) Meg alpha activity decrease reflects destabilization of multistable percepts. Cogn Brain Res 14(3):370–382

    Article  Google Scholar 

  45. Sugiura T, Goto N, Hayashi A (2007) A discriminative model corresponding to hierarchical HMMs. Springer, Berlin

    Google Scholar 

  46. Sun S, Zhang C (2005) Learning online classification via decorrelated lms algorithm: application to braincomputer interfaces. In: Discovery Science, Springer, pp 215–226

  47. Sun S, Zhang C (2006) Adaptive feature extraction for eeg signal classification. Med Biol Eng Comput 44(10):931–935

    Article  Google Scholar 

  48. Sun S, Zhang C, Zhang D (2007) An experimental evaluation of ensemble methods for eeg signal classification. Pattern Recognit Lett 28(15):2157–2163

    Article  Google Scholar 

  49. Sun S, Zhang C, Lu Y (2008) The random electrode selection ensemble for eeg signal classification. Pattern Recognit 41(5):1663–1675

    Article  MATH  Google Scholar 

  50. Torn A, Zilinskas A (1989) Global optimization. SpringerVerlag, New York Inc

    Book  Google Scholar 

  51. Weiskopf N, Mathiak K, Bock SW, Scharnowski F, Veit R, Grodd W, Goebel R, Birbaumer N (2004) Principles of a braincomputer interface (bci) based on realtime functional magnetic resonance imaging (fmri). Biomed Eng IEEE Trans 51(6):966–970

    Article  Google Scholar 

  52. Wolford J (2012) Man with locked-in syndrome tweets using eye-tracking tech. http://www.webpronews.com/man-with-locked-in-syndrome-tweets-using-eye-tracking-tech-2012-06. Online. Accessed 25 Feb 2014

  53. Wolpaw JR, Birbaumer N, Heetderks WJ, McFarland DJ, Peckham PH, Schalk G, Donchin E, Quatrano LA, Robinson CJ, Vaughan TM (2000) Braincomputer interface technology: a review of the first international meeting. IEEE Trans Rehabil Eng 8(2):164–173

    Article  Google Scholar 

  54. Wubbels P, Nishimura E, Rapoport E, Darling B, Proffitt D, Downs T, Downs JH III (2007) Exploring calibration techniques for functional nearinfrared imaging (fNIR) controlled braincomputer interfaces. Springer, Berlin

    Google Scholar 

  55. Yordanova J, Kolev V, Polich J (2001) P300 and alpha eventrelated desynchronization (erd). Psychophysiology 38(1):143–152

    Article  Google Scholar 

  56. Zhiwei L, Minfen S (2007) Classification of mental task eeg signals using wavelet packet entropy and svm. In: Electronic measurement and instruments, 2007. ICEMI’07. 8th international conference on, IEEE, pp 3906–3909

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, S.K., Shah, S. & Kumar, R. Group based Swarm evolution algorithm (GSEA) driven mental task classifier. Memetic Comp. 7, 19–27 (2015). https://doi.org/10.1007/s12293-015-0155-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12293-015-0155-0

Keywords

Navigation