Skip to main content
Log in

Reference-lines-steered memetic multi-objective evolutionary algorithm with adaptive termination criterion

  • Regular Research Paper
  • Published:
Memetic Computing Aims and scope Submit manuscript

Abstract

Multi-objective evolutionary algorithms (MOEAs) have been the choice for generating a set of Pareto-optimal (PO) solutions in one run. However, these algorithms sometimes suffer slow and poor convergence toward the PO front. One of the remedies to improve their convergence is to couple global search of MOEAs with local search. However, such coupling brings other implementation challenges, such as what, when, and how many solutions can be chosen for local search with MOEAs? In this paper, these challenges are addressed by developing a local search module that can choose solutions for local search using a set of reference lines. The heuristic strategies are also developed with the module for determining the frequency of executing local search and for terminating MOEA adaptively using a statistical performance indicator. The proposed algorithm, which is referred to as \({\text {RM}}^2\)OEA, is tested on 2-objective ZDT and 3-objective DTLZ test problems. Results demonstrate faster and improved convergence of \({\text {RM}}^2\)OEA over a benchmark MOEA from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Barakat N, Sharma D (2019) Evolutionary multi-objective optimization for bulldozer and its blade in soil cutting. Int J Manag Sci Eng Manag 14(2):102–112

    Google Scholar 

  2. Bosman PAN (2012) On gradients and hybrid evolutionary algorithms for real-valued multiobjective optimization. IEEE Trans Evol Comput 16(1):51–69

    Article  Google Scholar 

  3. Chen B, Zeng W, Lin Y, Zhang D (2015) A new local search-based multiobjective optimization algorithm. IEEE Trans Evol Comput 19(1):50–73. https://doi.org/10.1109/TEVC.2014.2301794

    Article  Google Scholar 

  4. Das I, Dennis JE (1998) Normal-boundary intersection: a new method for generating the pareto surface in nonlinear multicriteria optimization problems. SIAM J Optim 8(3):631–657. https://doi.org/10.1137/S1052623496307510

    Article  MathSciNet  MATH  Google Scholar 

  5. Deb K, Agrawal RB (1995) Simulated binary crossover for continuous search space. Complex Syst 9(2):115–148

    MathSciNet  MATH  Google Scholar 

  6. Deb K, Miettinen K, Chaudhuri S (2010) Toward an estimation of Nadir objective vector using a hybrid of evolutionary and local search approaches. IEEE Trans Evol Comput 14(6):821–841. https://doi.org/10.1109/TEVC.2010.2041667

    Article  Google Scholar 

  7. Deb K, Miettinen K, Sharma D (2009) A hybrid integrated multi-objective optimization procedure for estimating Nadir point. In: Ehrgott M, Fonseca CM, Gandibleux X, Hao JK, Sevaux M (eds) Evolutionary multi-criterion optimization. Springer, Berlin, Heidelberg, pp 569–583

    Chapter  Google Scholar 

  8. Deb K, Thiele L, Laumanns M, Zitzler E (2005) Scalable test problems for evolutionary multiobjective optimization. In: Abraham A, Jain L, Goldberg R (eds) Evolutionary multiobjective optimization: theoritical advances and applications. Springer, London, pp 105–145

    Chapter  Google Scholar 

  9. Ishibuchi H, Masuda H, Nojima Y (2015) A study on performance evaluation ability of a modified inverted generational distance indicator. In: Proceedings of the 2015 annual conference on genetic and evolutionary computation. ACM, pp 695–702

  10. Ishibuchi H, Murata T (1996) Multi-objective genetic local search algorithm. IEEE Trans Evol Comput 28:119–124

    Article  Google Scholar 

  11. Ishibuchi H, Narukawa K (2004) Some issues on the implementation of local search in evolutionary multiobjective optimization. In: Deb K (ed) Genetic and evolutionary computation - GECCO 2004. Springer, Berlin, Heidelberg, pp 1246–1258

    Chapter  Google Scholar 

  12. Ishibuchi H, Yoshida T, Murata T (2003) Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE Trans Evol Comput 7(2):204–222

    Article  Google Scholar 

  13. Jaszkiewicz A (2002) Genetic local search for multi-objective combinatorial optimization. Eur J Oper Res 137(1):50–71. https://doi.org/10.1016/S0377-2217(01)00104-7

    Article  MathSciNet  MATH  Google Scholar 

  14. Ke L, Zhang Q, Battiti R (2014) Hybridization of decomposition and local search for multiobjective optimization. IEEE Trans Cybern 44(10):1808–1820

    Article  Google Scholar 

  15. Kumar A, Sharma D, Deb K (2007) A hybrid multi-objective optimization procedure using pcx based nsga-ii and sequential quadratic programming. In: 2007 IEEE congress on evolutionary computation, pp 3011–3018. https://doi.org/10.1109/CEC.2007.4424855

  16. Lara A, Sanchez G, Coello CAC, Schutze O (2010) HCS: a new local search strategy for memetic multiobjective evolutionary algorithms. IEEE Trans Evol Comput 14(1):112–132. https://doi.org/10.1109/TEVC.2009.2024143

    Article  Google Scholar 

  17. Murata T, Nozawa H, Tsujimura Y, Gen M, Ishibuchi H (2002) Effect of local search on the performance of cellular multiobjective genetic algorithms for designing fuzzy rule-based classification systems. In: Proceedings of the 2002 congress on evolutionary computation, 2002. CEC ’02, vol 1, pp 663–668. https://doi.org/10.1109/CEC.2002.1007005

  18. Purshouse RC, Fleming PJ (2007) On the evolutionary optimization of many conflicting objectives. IEEE Trans Evol Comput 11(6):770–784. https://doi.org/10.1109/TEVC.2007.910138

    Article  Google Scholar 

  19. Ram L, Sharma D (2017) Evolutionary and gpu computing for topology optimization of structures. Swarm Evol Comput 35:1–13. https://doi.org/10.1016/j.swevo.2016.08.004

    Article  Google Scholar 

  20. Ravindran A, Ragsdell K, Reklaitis G (2007) Engineering optimization: methods and applications, 2nd edn. Wiley, Hoboken. https://doi.org/10.1002/9780470117811

    Book  Google Scholar 

  21. Sharma D, Deb K (2014) Generation of compliant mechanisms using hybrid genetic algorithm. J Inst Eng India Ser C 95(4):295–307. https://doi.org/10.1007/s40032-014-0127-z

    Article  Google Scholar 

  22. Sharma D, Deb K, Kishore N (2008) Towards generating diverse topologies of path tracing compliant mechanisms using a local search based multi-objective genetic algorithm procedure. In: IEEE congress on evolutionary computation, 2008. CEC 2008. (IEEE World Congress on Computational Intelligence). IEEE, pp 2004–2011

  23. Sharma D, Deb K, Kishore NN (2011) Domain-specific initial population strategy for compliant mechanisms using customized genetic algorithm. Struct Multidiscip Optim 43(4):541–554

    Article  Google Scholar 

  24. Sharma D, Deb K, Kishore NN (2014) Customized evolutionary optimization procedure for generating minimum weight compliant mechanisms. Eng Optim 46(1):39–60

    Article  Google Scholar 

  25. Sharma D, Kumar A, Deb K, Sindhya K (2007) Hybridization of sbx based nsga-ii and sequential quadratic programming for solving multi-objective optimization problems. In: 2007 IEEE congress on evolutionary computation, pp 3003–3010. https://doi.org/10.1109/CEC.2007.4424854

  26. Sindhya K, Miettinen K, Deb K (2013) A hybrid framework for evolutionary multi-objective optimization. IEEE Trans Evol Comput 17(4):495–511

  27. Yuan Y, Xu H, Wang B, Yao X (2016) A new dominance relation-based evolutionary algorithm for many-objective optimization. IEEE Trans Evol Comput 20(1):16–37. https://doi.org/10.1109/TEVC.2015.2420112

    Article  Google Scholar 

  28. Zhang Q, Li H (2007) Moea/d: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731. https://doi.org/10.1109/TEVC.2007.892759

    Article  Google Scholar 

  29. Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: empirical results. Evol Comput J 8(2):125–148

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saikia, R., Sharma, D. Reference-lines-steered memetic multi-objective evolutionary algorithm with adaptive termination criterion. Memetic Comp. 13, 49–67 (2021). https://doi.org/10.1007/s12293-021-00324-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12293-021-00324-x

Keywords

Navigation