Skip to main content
Log in

A progressive approach for processing satellite data by operational research

  • Original Paper
  • Published:
Operational Research Aims and scope Submit manuscript

Abstract

Satellite data, together with spatial technologies, have a vital importance in earth sciences to continuously monitor natural and physical processes. However, images taken by earth-observing satellites are often associated with uncertainties due to atmospheric effects (i.e., absorption and scattering by atmospheric gases and aerosols). In this paper, a more adaptable approach for the removal of atmospheric effects from satellite data is introduced within an operational research perspective by utilizing nonparametric regression splines. Regional atmospheric correction models via multivariate adaptive regression splines (MARS) are applied on a set of satellite images for Alps and Turkey to calculate surface reflectance values. A classical radiative transfer based atmospheric correction method is likewise employed on the same data set. The results are compared in terms of relative differences with respect to surface reflectance data. MARS provides significant improvement in the order of 40 and 37 % for Alps and Turkey, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adler-Golden SM, Matthew MW, Bernstein LS, Levine RY, Berk A, Richtsmeier SC, Acharya PK, Anderson GP, Felde G, Gardner J, Hoke M, Jeong LS, Pukall B, Mello J, Ratkowski A, Burke H-H (1999) Atmospheric correction for shortwave spectral imagery based on MODTRAN4. Imaging Spectrom V. doi:10.1117/12.366315

    Google Scholar 

  • Albert P, Smith KM, Bennartz R, Newnham DA, Fischer J (2004) Satellite- and ground-based observations of atmospheric water vapor absorption in the 940 nm region. J Quant Spectrosc Radiat Transf 84(2):181–193

    Article  Google Scholar 

  • Allan MG, Hamilton DP, Hicks BJ, Brabyn L (2011) Landsat remote sensing of chlorophyll a concentrations in central North Island lakes of New Zealand. Int J Remote Sens 32(7):2037–2055

    Article  Google Scholar 

  • Arabatzis GD, Kokkinakis AK (2005) Typology of the lagoons of Northern Greece according to their environmental characteristics and fisheries production. Oper Res Int J 5(1):21–34

    Article  Google Scholar 

  • Babajimopoulos C, Panoras A (2005) Estimation of the water balance of cultivated soils by mathematical models. Oper Res Int J 5(1):127–140

    Article  Google Scholar 

  • Beal D, Baret F, Weiss M, Gu X, Verbrugghe M (2003) A method for MERIS atmospheric correction based on the spectral and spatial observation. In: Proceedings of paper presented at the geoscience and remote sensing symposium, 2003. IGARSS 2003

  • Ben-Tal A, Nemirovski A (2002) Robust optimization—methodology and applications. Math Progr 92(3):453–480

    Article  Google Scholar 

  • Berk A, Bernstein LS, Robertson DC (1989) MODTRAN: a moderate resolution model for LOWTRAN7. Final report, GL-TR-89-0122, AFGL, Hanscom AFB, MA, p 42

  • Brauers W (2008) Multi-objective decision making by reference point theory for a wellbeing economy. Oper Res Int J 8(1):89–104

    Article  Google Scholar 

  • Conel JE, Green RO, Vane G, Bruegge CJ, Alley RE (1987) AIS-2 radiometry and a comparison of methods for the recovery of ground reflectance. In: Vane G (ed) Proceedings of the Third Airborne Imaging Spectrometer Data Analysis Workshop, JPL Publication 87–30, Jet Propulsion Laboratory, Pasadena, CA, pp 18–47

  • Eldridge RG (1967) Water vapor absorption of visible and near infrared radiation. Appl Opt 6(4):709–713

    Article  Google Scholar 

  • Elith J, Leathwick J (2007) Predicting species distributions from museum and herbarium records using multiresponse models fitted with multivariate adaptive regression splines. Divers Distrib 13(3):265–275

    Article  Google Scholar 

  • Friedman JH (1991) Multivariate adaptive regression splines. Ann Stat 19:1–67

    Article  Google Scholar 

  • Galanopoulos K, Karagiannis G, Koutroumanidis T (2004) Malmquist productivity index estimates for European agriculture in the 1990s. Oper Res Int J 4(1):73–91

    Article  Google Scholar 

  • Hagolle O, Dedieu G, Mougenot B, Debaecker V, Duchemin B, Meygret A (2008) Correction of aerosol effects on multi-temporal images acquired with constant viewing angles: application to Formosat-2 images. Remote Sens Environ 112:1689–1701

    Article  Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction, 2nd edn. Springer, NewYork

    Book  Google Scholar 

  • Hubanks PA, King MD, Platnick S, Pincus R (2008) MODIS atmosphere L3 gridded product algorithm theoretical basis document (Collection 005 Version 1.1). Retrieved 29 Oct 2012. http://modis-atmos.gsfc.nasa.gov/_docs/L3_ATBD_2008_12_04.pdf

  • Jankowski P (1995) Integrating geographical information systems and multiple criteria decision-making methods. Int J Geogr Inf Syst 9:251–273

    Article  Google Scholar 

  • Kaloudis ST, Lorentzos NA, Sideridis AB, Yialouris CP (2005) A decision support system for forest fire management. Oper Res Int J 5(1):141–152

    Article  Google Scholar 

  • Kooperberg C, Bose S, Stone CJ (1997) Polychotomous regression. J Am Stat Assoc 92(437):117–127

    Article  Google Scholar 

  • Kotchenova SY, Vermote EF (2007) Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II: homogeneous lambertian and anisotropic surfaces. Appl Opt 46:4455–4464

    Article  Google Scholar 

  • Kotchenova SY, Vermote EF, Matarrese R, Klemm FJ (2006) Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: path radiance. Appl Opt 45:6762–6774

    Article  Google Scholar 

  • Lu D, Mausel P, Brondízio E, Moran E (2004) Change detection techniques. Int J Remote Sens 25(12):2365–2401

    Article  Google Scholar 

  • Maisongrande P, Duchemin B, Dedieu G (2004) VEGETATION/SPOT: an operational mission for the Earth monitoring; presentation of new standard products. Int J Remote Sens 25:9–14

    Article  Google Scholar 

  • Milborrow S (2012) Earth: multivariate adaptive regression spline models—derived from mda:mars by Trevor Hastie and Rob Tibshirani. R package version 3.2-2. http://CRAN.R-project.org/package=earth

  • Özmen A, Weber G-W, Batmaz İ, Kropat E (2011) RCMARS: robustification of CMARS with different scenarios under polyhedral uncertainty set. Commun Nonlinear Sci Numer Simul 16:4780–4787

    Article  Google Scholar 

  • Özmen A, Batmaz İ, Weber G-W (2014) Precipitation modeling by polyhedral RCMARS and comparison with MARS and CMARS. Environ Model Assess 19(5):425–435

    Article  Google Scholar 

  • Proud SR, Fensholt R, Rasmussen MO, Sandholt I (2010a) A comparison of the effectiveness of 6S and SMAC in correcting for atmospheric interference in Meteosat second generation images. J Geophys Res Atmos 115(D17209):17201–17214

    Google Scholar 

  • Proud SR, Rasmussen MO, Fensholt R, Sandholt I, Shisanya C, Mutero W, Mbow C, Anyamba A (2010b) Improving the SMAC atmospheric correction code by analysis of Meteosat second generation NDVI and surface reflectance data. Remote Sens Environ 114:1687–1698

    Article  Google Scholar 

  • Qu JJ, Gao W, Kafatos M, Murphy RE, Salomonson VV (2006) Earth science satellite remote sensing. Volume 1: science and instruments. Springer, Beijing

    Book  Google Scholar 

  • R_Software (2012) R Development Core Team, R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/

  • Rahman H, Dedeiu G (1994) SMAC: a simplified method for the atmospheric correction of satellite measurements in the solar spectrum. Int J Remote Sens 15:123–143

    Article  Google Scholar 

  • Richter R, Schlaepfer D (2002) Geo-atmospheric processing of airborne imaging spectrometry data. Part 2: atmospheric/topographic correction. Int J Remote Sens 23:2631–2649

    Article  Google Scholar 

  • Roberts D, Yamaguchi Y, Lyon R (1986) Comparison of various techniques for calibration of AIS data. NASA STI/Recon Tech Rep N 87:12970

    Google Scholar 

  • Singh A (1989) Review article digital change detection techniques using remotely-sensed data. Int J Remote Sens 10(6):989–1003

    Article  Google Scholar 

  • Skuras D, Wade A, Psaltopoulos D, Whitehead P, Kontolainou A, Erlandsson M (2014) An interdisciplinary modelling approach assessing the cost-effectiveness of agri-environmental measures on reducing nutrient concentration to WFD thresholds under climate change: the case of the Louros catchment. Oper Res Int J 14(2):205–224

    Article  Google Scholar 

  • SMAC (2014) SMAC code. http://www.cesbio.ups-tlse.fr/us/serveurs4.htm

  • Tanre D, Deroo C, Duhaut P, Herman M, Morcrette JJ, Perbos J, Deschamps PY (1990) Description of a computer code to simulate the satellite signal in the solar spectrum—the 5S code. Int J Remote Sens 11:659–668

    Article  Google Scholar 

  • Tso B, Mather PM (2009) Classification methods for remotely sensed data, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  • Vasilyev A, Melnikova I (2011) Multiplicity of solutions of the inverse problem for determining optical atmospheric parameters from remote observations. Int J Remote Sens 32(3):875–889

    Article  Google Scholar 

  • Vazakidis A, Karagiannis I (2011) Activity-based management and traditional costing in tourist enterprises (a hotel implementation model). Oper Res Int J 11(2):123–147

    Article  Google Scholar 

  • Vermote E, Tanre D, Deuze J, Herman M, Morcette J-J (1997) Second simulation of the Satellite signal in the solar spectrum, 6S: an overview. IEEE Trans Geosci Remote Sens 35:675–686

    Article  Google Scholar 

  • Vermote EF, Kotchenova SY, Ray JP (2011) MODIS surface reflectance user’s guide (Ver. 1.3). Retrieved 10 Nov 2012. http://dratmos.geog.umd.edu/products/MOD09_UserGuide_v1_3.pdf

  • Weber G-W, Batmaz İ, Köksal G, Taylan P, Yerlikaya- Özkurt F (2011) CMARS: a new contribution to nonparametric regression with multivariate adaptive regression splines supported by continuous optimization. Inverse Probl Sci Eng 20:371–400

    Article  Google Scholar 

  • Yang M-H, Yeh R-H (2016) Economic performances optimization of an organic Rankine cycle system with lower global warming potential working fluids in geothermal application. Renew Energy 85:1201–1213

    Article  Google Scholar 

  • Yerlikaya-Özkurt F, Askan A, Weber G-W (2014) An alternative approach to the ground motion prediction problem by a non-parametric adaptive regression method. Eng Optim 46(12):1651–1668

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable comments and remarks which improved the quality of the paper. The earth package used for MARS model building is available at https://cran.r-roject.org/web/packages/earth/index.html. The RT code SMAC is also open source and can be found at http://www.cesbio.ups-tlse.fr/us/serveurs4.htm. The MODIS image data used in this study can be downloaded free of charge from http://modis.gsfc.nasa.gov/data/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Semih Kuter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuter, S., Weber, GW. & Akyürek, Z. A progressive approach for processing satellite data by operational research. Oper Res Int J 17, 371–393 (2017). https://doi.org/10.1007/s12351-016-0229-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12351-016-0229-x

Keywords

Navigation