Skip to main content

Advertisement

Log in

Optimal production strategy for a manufacturing and remanufacturing system with return policy

  • Original Paper
  • Published:
Operational Research Aims and scope Submit manuscript

Abstract

This paper considers a monopolistic producer who produces new product in the first period and provides manufactured and remanufactured products in the second period. A return policy in the first period and the competition between the manufactured and the remanufactured products in the second period are jointly considered to develop the optimal production quantity strategies analytically and numerically. We find that if the two products are substitutable, the quantities of the new products manufactured in the first period and the remanufactured products produced in the second period are non-decreasing in the return policy, but the quantity of the manufactured products in the second period is decreasing in the return policy. In this case, the return rate determines the profit level, but the collection rate has little impact on the profit. If the two products are complementary, there is a critical value of the collection rate. When the collection rate is smaller than this value, the production quantities increase in the return policy; otherwise, they decrease in the return policy. In this scenario, the return policy and the collection rate mutually make a positive impact on the profit. Additionally, although a generous return policy is always profitable, it may lead to less production of manufactured and remanufactured products, especially when they are complementary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akçali E, Çetinkaya S (2011) Quantitative models for inventory and production planning in closed-loop supply chains. Int J Prod Res 49(8):2373–2407

    Article  Google Scholar 

  • Aras N, Verter V, Boyaci T (2006) Coordination and priority decisions in hybrid manufacturing/remanufacturing systems. Prod Oper Manag 15(4):528–543

    Article  Google Scholar 

  • Bose I, Anand P (2007) On returns policies with exogenous price. Eur J Oper Res 178(3):782–788

    Article  Google Scholar 

  • Chang SY, Yeh TY (2013) Optimal order quantity and product modularity for a two-echelon returnable supply chain. Int J Prod Res 51(17):5210–5220

    Article  Google Scholar 

  • Choi DW, Hwang H, Koh SG (2007) A generalized ordering and recovering policy for reusable items. Eur J Oper Res 182:764–774

    Article  Google Scholar 

  • DeCroix G, Zipkin P (2005) Inventory management for an assembly system with product or component returns. Manag Sci 51:1250–1265

    Article  Google Scholar 

  • Diallo C, Venkatadri U, Khatab A, Bhakthavatchalam S (2017) State of the art review of quality, reliability and maintenance issues in closed-loop supply chains with remanufacturing. Int J Prod Res 55(5):1277–1296

    Article  Google Scholar 

  • Diaz R, Marsillac E (2017) Evaluating strategies remanufacturing supply chain decisions. Int J Prod Res 55(9):2522–2539

    Article  Google Scholar 

  • Emmons H, Gilbert SM (1998) Note: the role of returns policies in pricing and inventory decisions for catalogue goods. Manag Sci 44(2):276–283

    Article  Google Scholar 

  • Ferrer G, Swaminathan JM (2006) Managing new and remanufactured products. Manage Sci 52(1):15–26

    Article  Google Scholar 

  • Ferrer G, Swaminathan JM (2010) Managing new and differentiated remanufactured products. Eur J Oper Res 203(2):370–379

    Article  Google Scholar 

  • Ghosh D, Gouda S, Shankar R, Swami S, Thomas VC (2018) Strategic decision making under subscription-based contracts for remanufacturing. Int J Prod Econ 200:134–150

    Article  Google Scholar 

  • Hariga M, As’ad R, Khan Z (2017) Manufacturing-remanufacturing policies for a centralized two stage supply chain under consignment stock partnership. Int J Prod Econ 183:362–374

    Article  Google Scholar 

  • Inderfurth K (1997) Simple optimal replenishment and disposal policies for a product recovery system with leadtimes. OR Spektrum 19(2):111–122

    Article  Google Scholar 

  • Junior LM, Filho MG (2012) Production planning and control for remanufacturing: literature review and analysis. Prod Plan Control 23(6):419–435

    Article  Google Scholar 

  • Junior LM, Filho MG (2016) Production planning and control for remanufacturing: exploring characteristics and difficulties with case studies. Prod Plan Control 27(3):212–225

    Article  Google Scholar 

  • Kenne JP, Dejax P, Gharbi A (2012) Production planning of a hybrid manufacturing-remanufacturing system under uncertainty within a closed-loop supply chain. Int J Prod Econ 135(1):81–93

    Article  Google Scholar 

  • Lau HS, Lau AHL (1999) Manufacturer’s pricing strategy and return policy for a single period commodity. Eur J Oper Res 116(2):291–304

    Article  Google Scholar 

  • Mukhopadhyay SK, Setaputra R (2011) Return policy in product reuse under uncertainty. Int J Prod Res 49(17):5317–5332

    Article  Google Scholar 

  • Padmanabhan V, Png IPL (1997) Manufacturer’s returns policies and retail competition. Mark Sci 16(1):81–94

    Article  Google Scholar 

  • Pasternack BA (1985) Optimal pricing and return policies for perishable commodities. Mark Sci 4(2):166–176

    Article  Google Scholar 

  • Polotski V, Kenne JP, Gharbi A (2017a) Production and setup policy optimization for hybrid manufacturing-remanufacturing systems. Int J Prod Econ 183:322–333

    Article  Google Scholar 

  • Polotski V, Kenne JP, Gharbi A (2017b) Set-up and production planning in hybrid manufacturing–remanufacturing systems with large returns. Int J Prod Res 55(13):3766–3787

    Article  Google Scholar 

  • Schrady D (1967) A deterministic inventory model for repairable items. Naval Res Logist 14:391–398

    Article  Google Scholar 

  • Schulz T, Voigt G (2014) A flexibly structured lot sizing heuristic for a static remanufacturing system. Omega 44:21–31

    Article  Google Scholar 

  • Simpson V (1978) Optimum solution structure for a repairable inventory problem. Oper Res 26(2):270–281

    Article  Google Scholar 

  • Steeneck DW, Sarin SC (2017) Determining end-of-life policy for recoverable products. Int J Prod Res 55(19):5782–5800

    Article  Google Scholar 

  • Tsay AA (2001) Managing retail channel overstock: markdown money and return policies. J Retail 71(4):457–492

    Article  Google Scholar 

  • Wei S, Tang O, Liu W (2015) Refund policies for cores with quality variation in OEM remanufacturing. Int J Prod Econ 170:629–640

    Article  Google Scholar 

  • Wu Z, Kwong CK, Lee CKM, Tang J (2016) Joint decision of product configuration and remanufacturing for product family design. Int J Prod Res 54(15):4689–4702

    Article  Google Scholar 

  • Xerox Corporation. https://www.xerox.com/en-us/about/ehs/paper-use. Accessed 15 May 2017

  • Xiong Y, Li G, Zhou Y, Fernandes K, Harrison R, Xiong Z (2014) Dynamic pricing models for used products in remanufacturing with lost-sales and uncertain quality. Int J Prod Econ 147:678–688

    Article  Google Scholar 

  • Yenipazarli A (2016) Managing new and remanufactured products to mitigate environmental damage under emissions regulation. Eur J Oper Res 249:117–130

    Article  Google Scholar 

  • Zahraei SM, Teo CC (2018) Optimizing a recover-and-assemble remanufacturing system with production smoothing. Int J Prod Econ 197:330–341

    Article  Google Scholar 

Download references

Funding

Funding was provided by National Natural Science Foundation (Grant Nos. 71872064, 71201059, 71431004, 71171082), Shanghai Pujiang Program (Grant No. 18PJC025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefeng Jia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Proposition 1

The first derivatives of the objective function with respect to the production quantities \( q_{1} \), \( q_{2N} \), and \( q_{2R} \) are:

$$ \frac{\partial \pi }{{\partial q_{1} }} = - \frac{2}{1 - r}q_{1} + \frac{a}{1 - r} - c,\quad \frac{\partial \pi }{{\partial q_{2N} }} = a - 2q_{2N} + 2kq_{2R} - c,\quad {\text{and}}\quad \frac{\partial \pi }{{\partial q_{2R} }} = a - 2q_{2R} + 2kq_{2N} - c + s. $$

Therefore, the second derivatives and the cross partial derivatives of the objective function with respect to the production quantities are:

$$ \begin{aligned} \frac{{\partial^{2} \pi }}{{\partial q_{1}^{2} }} & = - \frac{2}{1 - r},\quad \frac{{\partial^{2} \pi }}{{\partial q_{1} \partial q_{2N} }} = 0,\quad \frac{{\partial^{2} \pi }}{{\partial q_{1} \partial q_{2R} }} = 0; \\ \frac{{\partial^{2} \pi }}{{\partial q_{2N}^{2} }} & = - 2,\quad \frac{{\partial^{2} \pi }}{{\partial q_{2N} \partial q_{1} }} = 0,\quad \frac{{\partial^{2} \pi }}{{\partial q_{2N} \partial q_{2R} }} = 2k; \\ \frac{{\partial^{2} \pi }}{{\partial q_{2R}^{2} }} & = - 2,\quad \frac{{\partial^{2} \pi }}{{\partial q_{2R} \partial q_{1} }} = 0,\quad \frac{{\partial^{2} \pi }}{{\partial q_{2R} \partial q_{2N} }} = 2k. \\ \end{aligned} $$

We can get the corresponding Hessian Matrix as

$$ \left[ {\begin{array}{*{20}c} {\frac{{\partial^{2} \pi }}{{\partial q_{1}^{2} }}} & {\frac{{\partial^{2} \pi }}{{\partial q_{1} \partial q_{2N} }}} & {\frac{{\partial^{2} \pi }}{{\partial q_{1} \partial q_{2R} }}} \\ {\frac{{\partial^{2} \pi }}{{\partial q_{2N} \partial q_{1} }}} & {\frac{{\partial^{2} \pi }}{{\partial q_{2N}^{2} }}} & {\frac{{\partial^{2} \pi }}{{\partial q_{2N} \partial q_{2R} }}} \\ {\frac{{\partial^{2} \pi }}{{\partial q_{2R} \partial q_{1} }}} & {\frac{{\partial^{2} \pi }}{{\partial q_{2R} \partial q_{2N} }}} & {\frac{{\partial^{2} \pi }}{{\partial q_{2R}^{2} }}} \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} { - \frac{2}{1 - r}} & \quad 0 & \quad 0 \\ 0 & \quad { - 2} & \quad {2k} \\ 0 & \quad {2k} & \quad { - 2} \\ \end{array} } \right]. $$

Consequently, when \( k^{2} < 1 \), it is easy to verify that the Hessian matrix is strictly negative definite as \( H_{1} < 0 \), \( H_{2} > 0 \), and \( H_{3} < 0 \), where \( H_{1} \), \( H_{2} \), and \( H_{3} \) are the principal minors that \( H_{1} = [ { - \frac{2}{1 - r}, - 2, - 2} ] \), \( H_{2} =[ {\frac{4}{1 - r},\frac{4}{1 - r},4 - 4k^{2} } ] \), and \( H_{3} = - \frac{2}{1 - r}( {4 - 4k^{2} } ) \). Thus, the objective function is strictly concave. We complete the proof.\( \square \)

Proof of Proposition 2

From Proposition 1, we know that the objective function is strictly concave such that the optimal production quantities could be determined by Karush–Kuhn–Tucker (KKT) conditions. Denoting by \( \lambda \) the Lagrangian slack variable, the new objective function can be rewritten as:

$$ \begin{aligned} & L\left( {q_{1} ,q_{2N} ,q_{2R} ,\lambda } \right) \\ & \quad = \left( {\frac{1}{1 - r}\left( {a - q_{1} } \right) - c} \right)q_{1} + \left( {a - q_{2N} + kq_{2R} - c} \right) \cdot q_{2N} + \left( {a - q_{2R} + kq_{2N} - c + s} \right) \cdot q_{2R} + \lambda \left( {\theta q_{1} - q_{2R} } \right) \\ \end{aligned} $$

subject to

$$ \left\{ {\begin{array}{*{20}l} {\lambda \left( {\theta q_{1} - q_{2R} } \right) = 0} \hfill \\ {q_{1} ,q_{2N} ,q_{2R} ,\lambda \ge 0} \hfill \\ \end{array} } \right. $$

By setting

$$ \frac{\partial L}{{\partial q_{1} }} = - \frac{2}{1 - r}q_{1} + \frac{a}{1 - r} - c + \lambda \theta = 0; $$
(4)
$$ \frac{\partial L}{{\partial q_{2N} }} = a - 2q_{2N} + 2kq_{2R} - c = 0; $$
(5)
$$ \frac{\partial L}{{\partial q_{2R} }} = a - 2q_{2R} + 2kq_{2N} - c + s - \lambda = 0; $$
(6)

The optimal solutions could be achieved by considering the following two cases.

Case 1 If \( \lambda = 0 \), then \( \theta q_{1} \ge q_{2R} \), and we have:

$$ \left\{ {\begin{array}{*{20}l} { - {{2q_{1} } \mathord{\left/ {\vphantom {{2q_{1} } {\left( {1 - r} \right)}}} \right. \kern-0pt} {\left( {1 - r} \right)}} + {a \mathord{\left/ {\vphantom {a {\left( {1 - r} \right)}}} \right. \kern-0pt} {\left( {1 - r} \right)}} - c = 0;} \hfill \\ {a - 2q_{2N} + 2kq_{2R} - c = 0;} \hfill \\ {a - 2q_{2R} + 2kq_{2N} - c + s = 0.} \hfill \\ \end{array} } \right. $$

Solving the above equations, we can get:

$$ q_{1}^{*} = \frac{{a - \left( {1 - r} \right)c}}{2},\quad q_{2N}^{*} = \frac{{\left( {a - c} \right)\left( {1 + k} \right) + ks}}{{2\left( {1 - k^{2} } \right)}},\quad {\text{and}}\quad q_{2R}^{*} = \frac{{\left( {a - c} \right)\left( {1 + k} \right) + s}}{{2\left( {1 - k^{2} } \right)}}. $$

We can verify that \( q_{1}^{*} > 0 \), \( q_{2R}^{*} > 0 \). From \( q_{2N}^{*} > 0 \), we need \( \left( {a - c} \right)\left( {1 + k} \right) + ks > 0 \). Additionally, \( p_{1}^{*} - c = \frac{1}{1 - r}\left( {a - q_{1}^{*} } \right) - c = \frac{{a - \left( {1 - r} \right)c}}{{2\left( {1 - r} \right)}} > 0 \), \( p_{2N}^{*} - c = a - q_{2N}^{*} + kq_{2R}^{*} - c = \frac{a - c}{2} > 0 \), and \( p_{2R}^{*} - c + s = a - q_{2R}^{*} + kq_{2N}^{*} - c + s = \frac{a - c + s}{2} > 0 \), which indicate that the selling prices are acceptable. However, from the constraint \( \theta q_{1} \ge q_{2R} \), with some algebra, we have the following condition:

$$ \theta \left( {1 - k^{2} } \right)\left( {a - \left( {1 - r} \right)c} \right) - \left( {1 + k} \right)\left( {a - c} \right) - s \ge 0. $$

Thus, defining \( c_{1} = \theta \left( {1 - k^{2} } \right)\left( {a - \left( {1 - r} \right)c} \right) - \left( {1 + k} \right)\left( {a - c} \right) - s \) and \( c_{2} = \left( {a - c} \right)\left( {1 + k} \right) + ks \), we get the following conclusion:

(a) In case \( c_{1} \ge 0 \) and \( c_{2} > 0 \), the optimal production quantities are:

$$ q_{1}^{*} = \frac{{a - \left( {1 - r} \right)c}}{2},\quad q_{2N}^{*} = \frac{{\left( {a - c} \right)\left( {1 + k} \right) + ks}}{{2\left( {1 - k^{2} } \right)}},\quad {\text{and}}\quad q_{2R}^{*} = \frac{{\left( {a - c} \right)\left( {1 + k} \right) + s}}{{2\left( {1 - k^{2} } \right)}}; $$

(b) In case \( c_{1} \ge 0 \) and \( c_{2} \le 0 \), the optimal production quantities are

$$ q_{1}^{*} = \frac{{a - \left( {1 - r} \right)c}}{2},\quad q_{2N}^{*} = 0,\quad {\text{and}}\quad q_{2R}^{*} = \frac{{\left( {a - c} \right)\left( {1 + k} \right) + s}}{{2\left( {1 - k^{2} } \right)}}. $$

Case 2 If \( \lambda > 0 \), then \( \theta q_{1} = q_{2R} \), and we have:

Substituting it into Eq. (5), with some algebra, we have:

$$ q_{2N} = \frac{{a + 2\theta kq_{1} - c}}{2}. $$
(7)

Additionally, with (4) + (6) * θ, we get

$$ \theta \left( {a - 2q_{2R} + 2kq_{2N} - c + s} \right) - \frac{2}{1 - r}q_{1} + \frac{a}{1 - r} - c = 0. $$
(8)

Substituting Eq. (7) into (8), with some algebra, we have:

$$ q_{1}^{*} = \frac{{a - \left( {1 - r} \right)c + \theta \left( {1 - r} \right)\left( {\left( {a - c} \right)\left( {1 + k} \right) + s} \right)}}{{2\left( {1 + \theta^{2} \left( {1 - k^{2} } \right)\left( {1 - r} \right)} \right)}},\quad q_{2N}^{*} = \frac{{a + 2\theta kq_{1}^{*} - c}}{2},\quad {\text{and}}\quad q_{2R}^{*} = \theta q_{1}^{*} . $$

Similarly, we can verify that \( q_{1}^{*} > 0 \), \( q_{2R}^{*} > 0 \). From \( q_{2N}^{*} > 0 \), we need \( a + 2\theta kq_{1}^{*} - c > 0 \), which indicates that \( a - c + \theta k\left( {a - \left( {1 - r} \right)c + \theta \left( {1 - r} \right)s} \right) + \theta^{2} \left( {a - c} \right)\left( {1 + k} \right)\left( {1 - r} \right) > 0 \). In addition, the constraints in terms of the selling prices are

$$ p_{1}^{*} - c = \frac{1}{1 - r}\left( {a - q_{1}^{*} } \right) - c = \frac{{a - \left( {1 - r} \right)c - \theta \left( {1 - r} \right)s + \theta \left( {1 + k} \right)\left( {1 - r} \right)\left( {2\theta \left( {1 - k} \right)\left( {a - \left( {1 - r} \right)c - s} \right) - a + c} \right)}}{{2\left( {1 + \theta^{2} \left( {1 - k^{2} } \right)\left( {1 - r} \right)} \right)}}, $$
$$ p_{2N}^{*} - c = a - q_{2N}^{*} + kq_{2R}^{*} - c = \frac{a - c}{2}, $$
$$ \begin{aligned} p_{2R}^{*} - c + s & = a - q_{2R}^{*} + kq_{2N}^{*} - c + s \\ & = \frac{{\left( {2 + k + \theta \left( {1 - k^{2} } \right)\left( {\theta \left( {1 - r} \right) - 1} \right)} \right)\left( {a - c} \right) + 2s + \theta \left( {1 - k^{2} } \right)\left( {\theta \left( {1 - r} \right)s + rc} \right)}}{{1 + \theta^{2} \left( {1 - k^{2} } \right)\left( {1 - r} \right)}}. \\ \end{aligned} $$

It is clearly that \( p_{2N}^{*} - c > 0 \). In terms of \( p_{2R}^{*} - c + s \), since \( 0 \le \theta < 1 \), \( 0 < 1 - k^{2} \le 1 \), and \( - 1 \le \theta \left( {1 - r} \right) - 1 < 0 \), we get \( 0 < 2 + k + \theta \left( {1 - k^{2} } \right)\left( {\theta \left( {1 - r} \right) - 1} \right) \) such that the numerator of \( p_{2R}^{*} - c + s \) is larger than zero. Thus, \( p_{2R}^{*} - c + s > 0 \). However, unfortunately, it is intractable to determine the sign of \( p_{1}^{*} - c \) which is dependent on the values of the parameters.

Hence, defining \( c_{3} = a - \left( {1 - r} \right)c - \theta \left( {1 - r} \right)s + \theta \left( {1 + k} \right)\left( {1 - r} \right)\left( {2\theta \left( {1 - k} \right)\left( {a - \left( {1 - r} \right)c - s} \right) - a + c} \right) \) and \( c_{4} = a - c + \theta k\left( {a - \left( {1 - r} \right)c + \theta \left( {1 - r} \right)s} \right) + \theta^{2} \left( {a - c} \right)\left( {1 + k} \right)\left( {1 - r} \right) \), the conclusions are summarized as follows:

(c) In case \( c_{1} < 0 \), \( c_{3} > 0 \), and \( c_{4} > 0 \), the optimal production quantities are

$$ q_{1}^{*} = \frac{{a - \left( {1 - r} \right)c + \theta \left( {1 - r} \right)\left( {\left( {a - c} \right)\left( {1 + k} \right) + s} \right)}}{{2\left( {1 + \theta^{2} \left( {1 - k^{2} } \right)\left( {1 - r} \right)} \right)}},\quad q_{2N}^{*} = \frac{{a + 2\theta kq_{1}^{*} - c}}{2},\quad q_{2R}^{*} = \theta q_{1}^{*} ; $$

(d) In case \( c_{1} < 0 \), \( c_{3} > 0 \), and \( c_{4} \le 0 \), the optimal production quantities are

$$ q_{1}^{*} = \frac{{a - \left( {1 - r} \right)c + \theta \left( {1 - r} \right)\left( {\left( {a - c} \right)\left( {1 + k} \right) + s} \right)}}{{2\left( {1 + \theta^{2} \left( {1 - k^{2} } \right)\left( {1 - r} \right)} \right)}},\quad q_{2N}^{*} = 0,\quad q_{2R}^{*} = \theta q_{1}^{*} ; $$

(e) In case \( c_{1} < 0 \) and \( c_{3} \le 0 \), the optimal production quantities are

$$ q_{1}^{*} = 0,\quad q_{2N}^{*} = \frac{a - c}{2},\quad q_{2R}^{*} = 0. $$

Summarizing the results of (a)–(e) in subcases 1 and 2, we can conclude the optimal production quantities determined by Proposition 2.\( \square \)

Proof of Proposition 3

We prove the proposition as the following:

(1) When \( c_{1} > 0 \), the first derivatives of the optimal production quantities with respect to the return policy and the cross demand sensitivity are

$$ \frac{{\partial q_{1}^{*} }}{\partial r} = \frac{c}{2} > 0,\quad \frac{{\partial q_{2N}^{*} }}{\partial r} = 0,\quad \frac{{\partial q_{2R}^{*} }}{\partial r} = 0 $$

and

$$ \frac{{\partial q_{1}^{*} }}{\partial k} = 0,\quad \frac{{\partial q_{2N}^{*} }}{\partial k} = \frac{{\left( {1 + k} \right)^{2} \left( {a - c - s} \right) + 2\left( {k^{2} + k + 1} \right)s}}{{2\left( {1 - k^{2} } \right)^{2} }} > 0,\quad \frac{{\partial q_{2R}^{*} }}{\partial k} = \frac{{\left( {a - c} \right)\left( {1 + k} \right)^{2} + 2ks}}{{2\left( {1 - k^{2} } \right)^{2} }}. $$

It is easy to verify that there are two threshold values \( k_{1} = \frac{{ - \sqrt {s\left( {2a - 2c + s} \right)} - s}}{a - c} - 1 \) and \( k_{2} = \frac{{\sqrt {s\left( {2a - 2c + s} \right)} - s}}{a - c} - 1 \) such that when \( k_{1} < k < k_{2} \), \( \frac{{\partial q_{2R}^{*} }}{\partial k} \le 0 \); otherwise, \( \frac{{\partial q_{2R}^{*} }}{\partial k} > 0 \). Additionally, we can verify that \( k_{1} < - 1 \) and \( k_{2} < 1 \). Therefore, when \( - 1 < k < k_{1} \), we know \( q_{2R}^{*} \) is decreasing in \( k \); when \( k_{2} \le k < 1 \), we know \( q_{2R}^{*} \) is increasing in \( k \).

(2) When \( c_{1} \le 0 \) and \( c_{2} > 0 \), the corresponding first derivatives with respect to \( r \) are

$$ \frac{{\partial q_{1}^{*} }}{\partial r} = \frac{{c + \theta \left( {\theta \left( {1 + k} \right)\left( {c - ak} \right) - s} \right)}}{{2\left( {1 + \theta^{2} \left( {1 - k^{2} } \right)\left( {1 - r} \right)} \right)^{2} }},\quad \frac{{\partial q_{2N}^{*} }}{\partial r} = \theta k\frac{{\partial q_{1}^{*} }}{\partial r},\quad \frac{{\partial q_{2R}^{*} }}{\partial r} = \theta \frac{{\partial q_{1}^{*} }}{\partial r}. $$

Similarly, we can get two threshold values \( k_{1} = \frac{{ - \frac{1}{\theta }\sqrt {\theta^{2} \left( {a + c} \right)^{2} + 4a\left( {c - \theta s} \right)} - \left( {a - c} \right)}}{2a} \) and \( k_{2} = \frac{{\frac{1}{\theta }\sqrt {\theta^{2} \left( {a + c} \right)^{2} + 4a\left( {c - \theta s} \right)} - \left( {a - c} \right)}}{2a} \) such that when \( k_{1} < k < k_{2} \), \( \frac{{\partial q_{1}^{*} }}{\partial r} > 0 \); otherwise, \( \frac{{\partial q_{1}^{*} }}{\partial r} \le 0 \). It is readily to verify that \( k_{1} \le \frac{{ - \frac{1}{\theta }\sqrt {\theta^{2} \left( {a + c} \right)^{2} } - \left( {a - c} \right)}}{2a} = - 1 \); however, unfortunately, \( k_{2} \) may be larger or less than 1, which depends on the values of related parameters. On the other hand, \( \frac{{\partial q_{2N}^{*} }}{\partial r} \) has opposite sign to \( \frac{{\partial q_{1}^{*} }}{\partial r} \) when \( k < 0 \). Thus, we have the conclusion described in the second part of the proposition.\( \square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, F., Fan, T., Jia, X. et al. Optimal production strategy for a manufacturing and remanufacturing system with return policy. Oper Res Int J 21, 251–271 (2021). https://doi.org/10.1007/s12351-019-00450-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12351-019-00450-y

Keywords

Navigation