Skip to main content
Log in

Multi-product dual sourcing problem with limited capacities

  • Original paper
  • Published:
Operational Research Aims and scope Submit manuscript

Abstract

This study considers a dual sourcing problem with multiple products in which each product can be procured from two capacitated suppliers, one with low production costs but high unreliability, and the other with high production costs but high reliability. The unreliable supplier cannot deliver any products if there is even one disruption. The objective of the retailer is to determine what order quantities for all of the products from the two suppliers, subject to the supplier capacity constraints, will maximize the expected profit. We use an extended newsvendor model to characterize the problem. A two-tier bi-section search method is developed for seeking the optimal solution to the problem. Numerical results are used to assess the effectiveness of the proposed method and the value of dual sourcing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdel-Malek L, Montanari R, Morales LC (2004) Exact, approximate, and generic iterative models for the multi-product newsboy problem with budget constraint. Int J Prod Econ 91(2):189–198

    Article  Google Scholar 

  • Agrawal N, Nahmias S (1997) Rationalization of the supplier base in the presence of yield uncertainty. Prod Oper Manag 6:291–308

    Article  Google Scholar 

  • Anton JJ, Yao DA (1987) Second sourcing and the experience curve: price competition in defense procurement. RAND J Econ 18:57–76

    Article  Google Scholar 

  • Anupindi R, Akella R (1993) Diversification under supply uncertainty. Manag Sci 39:944–963

    Article  Google Scholar 

  • Burke GJ, Carrillo JE, Vakharia AJ (2007) Single versus multiple supplier sourcing strategies. Eur J Oper Res 182:95–112

    Article  Google Scholar 

  • Chiang C, Benton WC (1994) Sole sourcing versus dual sourcing under stochastic lead times. Nav Res Logist 41:609–624

    Article  Google Scholar 

  • Chopra S, Reinhardt G, Mohan U (2007) The importance of decoupling recurrent and disruption risks in a supply chain. Nav Res Logist 54:544–555

    Article  Google Scholar 

  • Dada M, Petruzzi NC, Schwarz LB (2007) A newsvendor’s procurement problem when suppliers are unreliable. Manuf Serv Oper Manag 9:9–32

    Article  Google Scholar 

  • Erlebacher SJ (2000) Optimal and heuristic solutions for the multi-item newsvendor problem with a single capacity constraint. Prod Oper Manag 9(3):303–318

    Article  Google Scholar 

  • Fong DKH, Gempesaw VM, Ord JK (2000) Analysis of a dual sourcing inventory model with normal unit demand and Erlang mixture lead times. Eur J Oper Res 120:97–107

    Article  Google Scholar 

  • Gerchak Y, Parlar M (1990) Yield randomness, cost tradeoffs and diversification in the EOQ model. Nav Res Logist 37:341–354

    Article  Google Scholar 

  • Giri BC (2011) Managing inventory with two suppliers under yield uncertainty and risk aversion. Int J Prod Econ 133:80–85

    Article  Google Scholar 

  • Glock CH (2012) Single sourcing versus dual sourcing under conditions of learning. Comput Ind Eng 62:318–328

    Article  Google Scholar 

  • Gurler U, Parlar M (1997) An inventory problem with two randomly available suppliers. Oper Res 45:904–918

    Article  Google Scholar 

  • Gurnani H, Akella R, Lehoczky J (2000) Supply management in assembly systems with random yield and random demand. IIE Trans 32:701–714

    Google Scholar 

  • Hendricks KB, Singhal VR (2012) Supply chain disruptions and corporate performance. In: Gurnani H, Mehrotra A, Ray S (eds) Supply chain disruptions: theory and practice of managing risk. Springer, London, pp 1–19

    Google Scholar 

  • Inderst R (2008) Single sourcing versus multiple sourcing. RAND J Econ 39:199–213

    Article  Google Scholar 

  • Lau HS, Lau HL (1996) The newsstand problem: a capacitated multiple-product single-period inventory problem. Eur J Oper Res 94(1):29–42

    Article  Google Scholar 

  • Lau HS, Zhao LG (1993) Optimal ordering policies with two suppliers when lead times and demands are all stochastic. Eur J Oper Res 68:120–133

    Article  Google Scholar 

  • Mohebbi E, Posner MJM (1998) Sole versus dual sourcing in a continuous-review inventory system with lost sales. Comput Ind Eng 34:321–336

    Article  Google Scholar 

  • Moon I, Silver EA (2000) The multi-item newsvendor problem with a budget constraint and fixed ordering costs. J Oper Res Soc 51(5):602–608

    Article  Google Scholar 

  • Niederhoff JA (2007) Using separable programming to solve the multi-product multiple ex-ante constraint newsvendor problem and extensions. Eur J Oper Res 176(2):941–955

    Article  Google Scholar 

  • Oberlaender M (2011) Dual sourcing of a newsvendor with exponential utility of profit. Int J Prod Econ 133:370–376

    Article  Google Scholar 

  • Papier F (2016) Supply allocation under sequential advance demand information. Social Science Electronic Publishing, New York, p 64

    Google Scholar 

  • Parlar M, Perry D (1996) Inventory models of future supply uncertainty with single and multiple suppliers. Nav Res Logist 43:191–210

    Article  Google Scholar 

  • Parlar M, Wang D (1993) Diversification under yield randomness in inventory models. Eur J Oper Res 66:52–64

    Article  Google Scholar 

  • Ramasesh RV, Ord JK, Hayya JC, Pan AC (1991) Sole versus dual sourcing in stochastic lead-time (s, Q) inventory models. Manag Sci 37:428–443

    Article  Google Scholar 

  • Ramasesh RV, Ord JK, Hayya JC (1993) Note: dual sourcing with non-identical suppliers. Nav Res Logist 40:279–282

    Article  Google Scholar 

  • Ryu SW, Lee KK (2003) A stochastic inventory model of dual sourced supply chain with lead-time reduction. Int J Prod Econ 81–82:513–524

    Article  Google Scholar 

  • Scheller-Wolf A, Van Houtum GJ, Veeraragnavan S (2003) Single index policies for inventory systems with dual supply models. (Working paper)

  • Sculli D, Wu SY (1981) Stock control with two suppliers and normal lead times. J Oper Res Soc 32:1003–1009

    Article  Google Scholar 

  • Shi J, Zhang G, Sha J (2011) Jointly pricing and ordering for a multi-product multi-constraint newsvendor problem with supplier quantity discounts. Appl Math Model 35(6):3001–3011

    Article  Google Scholar 

  • Song HM, Yang H, Bensoussan A, Zhang D (2014) Optimal decision making in multi-product dual sourcing procurement with demand forecast updating. Comput Oper Res 41:299–308

    Article  Google Scholar 

  • Swaminathan JM, Shanthikumar JG (1999) Supplier diversification: effect of discrete demand. Oper Res Lett 24:213–221

    Article  Google Scholar 

  • Tomlin B (2006) On the value of mitigation and contingency strategies for managing supply chain disruption risks. Manag Sci 52:639–657

    Article  Google Scholar 

  • Tomlin B, Wang Y (2005) On the value of mix flexibility and dual sourcing in unreliable newsvendor networks. Manuf Serv Oper Manag 7:37–57

    Article  Google Scholar 

  • Veeraraghavan S, Scheller-Wolf A (2008) Now or later: a simple policy for effective dual sourcing in capacitated systems. Oper Res 56:850–864

    Article  Google Scholar 

  • Veysey S (2011) Majority of companies suffered supply chain disruption in 2011: survey. Business Insurance. http://www.businessinsurance.com/article/20111102/NEWS06/111109973#. Accessed 28 Apr 2013

  • Vlachos D, Tagaras G (2001) An inventory system with two supply modes and capacity constraints. Int J Prod Econ 72:41–58

    Article  Google Scholar 

  • Xanthopoulos A, Vlachos D, Iakovou E (2012) Optimal newsvendor policies for dual-sourcing supply chains: a disruption risk management framework. Comput Oper Res 39:350–357

    Article  Google Scholar 

  • Yu HS, Zeng AZ, Zhao LD (2009) Single or dual sourcing: decision-making in the presence of supply chain disruption risks. Omega 37:788–800

    Article  Google Scholar 

  • Zhang B (2012) Multi-tier binary solution method for multi-product newsvendor problem with multiple constraints. Eur J Oper Res 218:426–434

    Article  Google Scholar 

  • Zhang B, Du SF (2010) Multi-product newsboy problem with limited capacity and outsourcing. Eur J Oper Res 202:107–113

    Article  Google Scholar 

  • Zhang B, Xu X, Hua Z (2009) A binary solution method for the multi-product newsboy problem with budget constraint. Int J Prod Econ 117:136–141

    Article  Google Scholar 

  • Zhou SX, Chao X (2014) Dynamic pricing and inventory management with regular and expedited supplies. Prod Oper Manag 23(12):2058–2074

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 71672199).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Proposition 1

Since the objective function \(\pi\) is separable, we just need to prove the concavity of \(\pi_{i}\). Taking the first and second derivatives of \(\pi_{i}\) with respect to \(x_{i,1}\) and \(x_{i,2}\), respectively, we have

$$\begin{aligned} \frac{{\partial \pi_{i} }}{{\partial x_{i,1} }} & = \left[ \begin{aligned} & (1 - r)((p_{i} - k_{i,1} ) - (p_{i} - s_{i} )F_{i} (x_{i,1} + x_{i,2} )) \\ & + \,r((p_{i} - k_{i,1} ) - (p_{i} - s_{i} )F_{i} (x_{i,1} )) \\ \end{aligned} \right] \\ & = (p_{i} - k_{i,1} ) - (1 - r)(p_{i} - s_{i} )F_{i} (x_{i,1} + x_{i,2} ) - r(p_{i} - s_{i} )F_{i} (x_{i,1} ), \\ \end{aligned}$$
(15)
$$\begin{aligned} \frac{{\partial \pi_{i} }}{{\partial x_{i,2} }} & = \left[ {(1 - r)((p_{i} - k_{i,2} ) - (p_{i} - s_{i} )F_{i} (x_{i,1} + x_{i,2} ))} \right] \\ & = (1 - r)(p_{i} - k_{i,2} ) - (1 - r)(p_{i} - s_{i} )F_{i} (x_{i,1} + x_{i,2} ), \\ \end{aligned}$$
(16)
$$\frac{{\partial^{2} \pi_{i} }}{{\partial x_{i,1}^{2} }} = - (1 - r)(p_{i} - s_{i} )f_{i} (x_{i,1} + x_{i,2} ) - r(p_{i} - s_{i} )f_{i} (x_{i,1} ) < 0,$$
(17)
$$\frac{{\partial^{2} \pi_{i} }}{{\partial x_{i,2}^{2} }} = - (1 - r)(p_{i} - s_{i} )f_{i} (x_{i,1} + x_{i,2} ) < 0,$$
(18)
$$\frac{{\partial^{2} \pi_{i} }}{{\partial x_{i,1} \partial x_{i,2} }} = - (1 - r)(p_{i} - s_{i} )f_{i} (x_{i,1} + x_{i,2} ) < 0.$$
(19)

Since the first order determinant of the Hessian matrix is \(\frac{{\partial^{2} \pi_{i} }}{{\partial x_{i,1}^{2} }} < 0\), and the second order determinant of the Hessian matrix is

$$\frac{{\partial^{2} \pi_{i} }}{{\partial x_{i,1}^{2} }}\frac{{\partial^{2} \pi_{i} }}{{\partial x_{i,2}^{2} }} - \left( {\frac{{\partial^{2} \pi_{i} }}{{\partial x_{i,1} \partial x_{i,2} }}} \right)^{2} = r(1 - r)(p_{i} - s_{i} )^{2} f_{i} (x_{i,1} + x_{i,2} )f_{i} (x_{i,1} ) > 0 ,$$
(20)

the Hessian matrix is negative definite, and \(\pi_{i}\) is concave in \(x_{i,1}\) and \(x_{i,2}\).

Proof of Proposition 2

(a) From Eqs. (6) and (7), we have

$$\left[ \begin{aligned} & (p_{i} - k_{i,1} ) - (1 - r)(p_{i} - s_{i} )F_{i} (x_{i,1} + x_{i,2} ) \\ & - r(p_{i} - s_{i} )F_{i} (x_{i,1} ) - \lambda_{1} c_{i,1} + w_{i,1} \\ \end{aligned} \right] = 0,$$
$$\left[ \begin{aligned} & (1 - r)(p_{i} - k_{i,2} ) - (1 - r)(p_{i} - s_{i} )F_{i} (x_{i,1} + x_{i,2} ) \\ & - \lambda_{2} c_{i,2} + w_{i,2} \\ \end{aligned} \right] = 0.$$

Then we have

$$\left[ \begin{aligned} & (p_{i} - k_{i,1} ) - r(p_{i} - s_{i} )F_{i} (x_{i,1} ) - (1 - r)(p_{i} - k_{i,2} ) \\ & - \lambda_{1} c_{i,1} + \lambda_{2} c_{i,2} + w_{i,1} - w_{i,2} \\ \end{aligned} \right] = 0.$$
(21)

From Eq. (21) we can get

$$F_{i} (x_{i,1} ) = \frac{{p_{i} - k_{i,1} - (1 - r)(p - k_{i,2} ) - \lambda_{1} c_{i,1} + \lambda_{2} c_{i,2} + w_{i,1} - w_{i,2} }}{{r(p_{i} - s_{i} )}}.$$
(22)

and

$$F_{i} (x_{i,1} + x_{i,2} ) = \frac{{(1 - r)(p_{i} - k_{i,2} ) - \lambda_{2} c_{i,2} + w_{i,2} }}{{(1 - r)(p_{i} - s_{i} )}}. .$$
(23)

Now we consider the following four cases, respectively:

  1. 1.

    \(\lambda_{1} > \frac{{p_{i} - k_{i,1} }}{{c_{i,1} }},\;\lambda_{2} > \frac{{(1 - r)(p_{i} - k_{i,2} )}}{{c_{i,2} }}\)

  2. 2.

    \(\lambda_{1} > \frac{{p_{i} - k_{i,1} }}{{c_{i,1} }},\quad \lambda_{2} \le \frac{{(1 - r)(p_{i} - k_{i,2} )}}{{c_{i,2} }}\)

  3. 3.

    \(\lambda_{1} \le \frac{{p_{i} - k_{i,1} }}{{c_{i,1} }},\quad \lambda_{2} > \frac{{(1 - r)(p_{i} - k_{i,2} )}}{{c_{i,2} }}\)

  4. 4.

    \(\lambda_{1} \le \frac{{p_{i} - k_{i,1} }}{{c_{i,1} }},\quad \lambda_{2} \le \frac{{(1 - r)(p_{i} - k_{i,2} )}}{{c_{i,2} }}\)

Case (1)

If \(p_{i} - k_{i,1} < \lambda_{1} c_{i,1}\), from Eq. (7) we have \((1 - r)(p_{i} - s_{i} )F_{i} (x_{i,1} + x_{i,2} ){ + }r(p_{i} - s_{i} )F_{i} (x_{i,1} ) < w_{i,1}\). \(w_{i,1} = 0\), and \(w_{i,1} x_{i,1} = 0\), so we have \(x_{i,1} = 0\). If \((1 - r)(p_{i} - k_{i,2} ) < \lambda_{2} c_{i,2}\), from Eq. (7) we have \((1 - r)(p_{i} - s_{i} )F_{i} (x_{i,1} + x_{i,2} ) < w_{i,2}\). \(w_{i,2} = 0\), and \(w_{i,2} x_{i,2} = 0\), so we have \(x_{i,2} = 0\).

Case (2)

If \(p_{i} - k_{i,1} < \lambda_{1} c_{i,1}\) and \((1 - r)(p_{i} - k_{i,2} ) \ge \lambda_{2} c_{i,2}\), substituting \(x_{i,1} = 0\) into Eq. (7), we have \((1 - r)(p_{i} - s_{i} )F_{i} (x_{i,2} ) \ge w_{i,2}\). \(w_{i,2} x_{i,2} = 0\) so \(w_{i,2} = 0\). Thus we have \(x_{i,2} = F_{i}^{ - 1} \left( {\frac{{(1 - r)(p_{i} - k_{i,2} ) - \lambda_{2} c_{i,2} }}{{(1 - r)(p_{i} - s_{i} )}}} \right)\).

Case (3)

If \((1 - r)(p_{i} - k_{i,2} ) < \lambda_{2} c_{i,2}\) and \(p_{i} - k_{i,1} \ge \lambda_{1} c_{i,1}\), substituting \(x_{i,2} = 0\) into Eq. (6), we have \((p_{i} - s_{i} )F_{i} (x_{i,1} ) \ge w_{i,1}\), \(w_{i,1} x_{i,1} = 0\), so \(w_{i,1} = 0\). Thus we have \(x_{i,1} = F_{i}^{ - 1} \left( {\frac{{p_{i} - k_{i,1} - \lambda_{1} c_{i,1} }}{{p_{i} - s_{i} }}} \right)\). Thus, we have \(x_{i,1} = F_{i}^{ - 1} \left( {\left( {\frac{{p_{i} - k_{i,1} - \lambda_{1} c_{i,1} }}{{p_{i} - s_{i} }}} \right)^{ + } } \right)\), \(x_{i,2} = F_{i}^{ - 1} \left( {\left( {\frac{{(1 - r)(p_{i} - k_{i,2} ) - \lambda_{2} c_{i,2} }}{{(1 - r)(p_{i} - s_{i} )}}} \right)^{ + } } \right)\).

Case (4)

If \(\lambda_{1} c_{i,1} \le p_{i} - k_{i,1}\), \(\lambda_{2} c_{i,2} \le (1 - r)(p_{i} - k_{i,2} )\), according to Eq. (17), we have \(x_{i,1} + x_{i,2} = F_{i}^{ - 1} \left( {\frac{{(1 - r)(p_{i} - k_{i,2} ) - \lambda_{2} c_{i,2} + w_{i,2} }}{{(1 - r)(p_{i} - s_{i} )}}} \right)\), from Eq. (16), we have \(x_{i,1} = F_{i}^{ - 1} \left( {\frac{{p_{i} - k_{i,1} - (1 - r)(p_{i} - k_{i,2} ) - \lambda_{1} c_{i,1} + \lambda_{2} c_{i,2} + w_{i,1} - w_{i,2} }}{{r(p_{i} - s_{i} )}}} \right)\).

In this case, we consider three sub-cases:

$$\left( {4.1} \right)\frac{{p_{i} - k_{i,1} - \lambda_{1} c_{i,1} }}{{p_{i} - s_{i} }} < \frac{{(1 - r)(p_{i} - k_{i,2} ) - \lambda_{2} c_{i,2} }}{{(1 - r)(p_{i} - s_{i} )}},$$
$$\left( {4.2} \right)\;\frac{{(1 - r)(p_{i} - k_{i,2} ) - \lambda_{2} c_{i,2} }}{{(1 - r)(p_{i} - s_{i} )}} < \frac{{p_{i} - k_{i,1} - \lambda_{1} c_{i,1} }}{{p_{i} - s_{i} }},$$
$$\left( {4.3} \right)\;\frac{{(1 - r)(p_{i} - k_{i,2} ) - \lambda_{2} c_{i,2} }}{{(1 - r)(p_{i} - s_{i} )}} = \frac{{p_{i} - k_{i,1} - \lambda_{1} c_{i,1} }}{{p_{i} - s_{i} }}.$$

Sub-case (4.1)

In this case, we have

$$\frac{{(p_{i} - k_{i,1} ) - (1 - r)(p_{i} - k_{i,2} ) - \lambda_{1} c_{i,1} + \lambda_{2} c_{i,2} }}{{r(p_{i} - s_{i} )}} < \frac{{p_{i} - k_{i,1} - \lambda_{1} c_{i,1} }}{{p_{i} - s_{i} }} < \frac{{(1 - r)(p_{i} - k_{i,2} ) - \lambda_{2} c_{i,2} }}{{(1 - r)(p_{i} - s_{i} )}},$$

From Eq. (15) we have

$$(p_{i} - k_{i,1} ) - (1 - r)(p_{i} - k_{i,2} ) - \lambda_{1} c_{i,1} + \lambda_{2} c_{i,2} - w_{i,2} = r(p_{i} - s_{i} )F_{i} (x_{i,1} ) - w_{i,1} .$$
(24)

If \((p_{i} - k_{i,1} ) - (1 - r)(p_{i} - k_{i,2} ) - \lambda_{1} c_{i,1} + \lambda_{2} c_{i,2} < 0\), from Eq. (24) we can have \(r(p_{i} - s_{i} )F_{i} (x_{i,1} ) < w_{i,1}\), \(w_{i,1} x_{i,1} = 0\), so \(x_{i,1} = 0\), substituting into Eq. (7) we can have \((1 - r)(p_{i} - s_{i} )F_{i} (x_{i,2} ) > w_{i,2}\), and \(w_{i,2} x_{i,2} = 0\), so \(w_{i,2} = 0\). Then we have

$$x_{i,2} = F_{i}^{ - 1} \left( {\frac{{(1 - r)(p_{i} - k_{i,2} - \lambda_{2} c_{i,2} )}}{{(1 - r)(p_{i} - s_{i} )}}} \right).$$

If \((p_{i} - k_{i,1} ) - (1 - r)(p_{i} - k_{i,2} ) - \lambda_{1} c_{i,1} + \lambda_{2} c_{i,2} \ge 0\), then we have \(r(p_{i} - s_{i} )F_{i} (x_{i,1} ) - w_{i,1} + w_{i,2} \ge 0\), and \((1 - r)(p_{i} - k_{i,2} ) - \lambda_{2} c_{i,2} > 0\) from Eq. (18). According to Eqs. (16) and (17), we know \(x_{i,1} + x_{i,2} > 0\). According to \(w_{i,1} x_{i,1} { + }w_{i,2} x_{i,2} = 0\), so \(w_{i,1} w_{i,2} { = }0\). If \(w_{i,2} { = }0\), then \(r(p_{i} - s_{i} )F_{i} (x_{i,1} ) \ge w_{i,1}\), and \(w_{i,1} x_{i,1} = 0\), so \(w_{i,1} = 0\). If \(w_{i,1} = 0\), then \(x_{i,1} + x_{i,2} > x_{i,1}\), and \(x_{i,2} > 0\), so \(w_{i,2} = 0\). Thus, \(w_{i,1} = w_{i,2} = 0\), we can have

$$x_{i,1} = F_{i}^{ - 1} \left( {\frac{{(p_{i} - k_{i,1} ) - (1 - r)(p_{i} - k_{i,2} ) - \lambda_{1} c_{i,1} + \lambda_{2} c_{i,2} }}{{r(p_{i} - s_{i} )}}} \right),\;{\text{and}}$$
$$x_{i,2} = F_{i}^{ - 1} \left( {\frac{{(1 - r)(p_{i} - k_{i,2} ) - \lambda_{2} c_{i,2} }}{{(1 - r)(p_{i} - s_{i} )}}} \right) - F_{i}^{ - 1} \left( {\frac{{(p_{i} - k_{i,1} ) - (1 - r)(p_{i} - k_{i,2} ) - \lambda_{1} c_{i,1} + \lambda_{2} c_{i,2} }}{{r(p_{i} - s_{i} )}}} \right).$$

Therefore, all the results in case (4.1) can be rewritten as the follows:

$$x_{i,1} = F_{i}^{ - 1} \left( {\left( {\frac{{(p_{i} - k_{i,1} ) - (1 - r)(p_{i} - k_{i,2} ) - \lambda_{1} c_{i,1} + \lambda_{2} c_{i,2} }}{{r(p_{i} - s_{i} )}}} \right)^{ + } } \right),$$
$$x_{i,2} = F_{i}^{ - 1} \left( {\frac{{(1 - r)(p_{i} - k_{i,2} ) - \lambda_{2} c_{i,2} }}{{(1 - r)(p_{i} - s_{i} )}}} \right) - F_{i}^{ - 1} \left( {\left( {\frac{{(p_{i} - k_{i,1} ) - (1 - r)(p_{i} - k_{i,2} ) - \lambda_{1} c_{i,1} ) + \lambda_{2} c_{i,2} }}{{r(p_{i} - s_{i} )}}} \right)^{ + } } \right).$$

Sub-case (4.2)

In this case, we have

$$\frac{{(1 - r)(p_{i} - k_{i,2} ) - \lambda_{2} c_{i,2} }}{{(1 - r)(p_{i} - s_{i} )}} < \frac{{p_{i} - k_{i,1} - \lambda_{1} c_{i,1} }}{{p_{i} - s_{i} }} < \frac{{(p_{i} - k_{i,1} ) - (1 - r)(p_{i} - k_{i,2} ) - \lambda_{1} c_{i,1} + \lambda_{2} c_{i,2} }}{{r(p_{i} - s_{i} )}}.$$

Since \(x_{i,1} + x_{i,2} \ge x_{i,1}\), from Eq. (16) and (17), we have \(w_{i,2} > 0\), so \(x_{i,2} = 0\). Then we have \(x_{i,1} = F_{i}^{ - 1} \left( {\frac{{(1 - r)(p_{i} - k_{i,2} - \lambda_{2} c_{i,2} + w_{i,2} )}}{{(1 - r)(p_{i} - s_{i} )}}} \right) > 0\), \(w_{i,1} x_{i,1} = 0\), so \(w_{i,1} = 0\). From \(\frac{{(1 - r)(p_{i} - k_{i,2} ) - \lambda_{2} c_{i,2} { + }w_{i,2} }}{{(1 - r)(p_{i} - s_{i} )}}{ = }\frac{{(p_{i} - k_{i,1} ) - (1 - r)(p_{i} - k_{i,2} ) - \lambda_{1} c_{i,1} + \lambda_{2} c_{i,2} - w_{i,2} }}{{r(p_{i} - s_{i} )}}\), we have

$$w_{i,2} = r(1 - r)\left( {\frac{{(p_{i} - k_{i,1} ) - (1 - r)(p_{i} - k_{i,2} ) - \lambda_{1} c_{i,1} + \lambda_{2} c_{i,2} }}{r} - \frac{{(1 - r)(p_{i} - k_{i,2} ) - \lambda_{2} c_{i,2} }}{1 - r}} \right).$$

Substituting it into \(x_{i,1}\), we have \(x_{i,1} = F_{i}^{ - 1} \left( {\frac{{p_{i} - k_{i,1} - \lambda_{1} c_{i,1} }}{{p_{i} - s_{i} }}} \right).\)

Sub-case (4.3)

In this case, we have

$$\frac{{(1 - r)(p_{i} - k_{i,2} ) - \lambda_{2} c_{i,2} }}{{(1 - r)(p_{i} - s_{i} )}} = \frac{{p_{i} - k_{i,1} - \lambda_{1} c_{i,1} }}{{p_{i} - s_{i} }} = \frac{{(p_{i} - k_{i,1} ) - (1 - r)(p_{i} - k_{i,2} ) - \lambda_{1} c_{i,1} + \lambda_{2} c_{i,2} }}{{r(p_{i} - s_{i} )}}.$$

If \(w_{i,1} > 0\) and \(w_{i,2} = 0\), then \(x_{i,1} + x_{i,2} \le x_{i,1}\), which violates \(x_{i,1} + x_{i,2} \ge x_{i,1}\). If \(w_{i,1} = 0\) and \(w_{i,2} > 0\), then \(x_{i,1} < x_{i,1} + x_{i,2}\), so \(x_{i,2} > 0\), which violates \(w_{i,2} x_{i,2} = 0\). If \(w_{i,1} > 0\) and \(w_{i,2} > 0\), then \(x_{i,1} + x_{i,2} > 0\), so \(w_{i,1} x_{i,1} { + }w_{i,2} x_{i,2} > 0\), which violates \(w_{i,1} x_{i,1} { + }w_{i,2} x_{i,2} = 0\). Thus there must be \(w_{i,1} = w_{i,2} = 0\), then \(x_{i,1} + x_{i,2} = x_{i,1}\), so \(x_{i,2} = 0\) and \(x_{i,1} = F_{i}^{ - 1} \left( {\frac{{p_{i} - k_{i,1} - \lambda_{1} c_{i,1} }}{{p_{i} - s_{i} }}} \right)\).

All results in sub-case (4.2) and sub-case (4.3) can be summarized as \(x_{i,1} = F_{i}^{ - 1} \left( {\frac{{p_{i} - k_{i,1} - \lambda_{1} c_{i,1} }}{{p_{i} - s_{i} }}} \right),\quad x_{i,2} = 0.\)

In all, the above results can be generalized as the equations in Proposition 2.

(b) \(\lambda_{j} = 0\) or \(\sum\nolimits_{i = 1}^{n} {c_{i,j} x_{i,j} } (\lambda_{j} ) = C_{j}\) implies that \(\lambda_{j} \left( {C_{j} - \sum\nolimits_{i = 1}^{n} {c_{i,j} x_{i,j} } \left( {\lambda_{j} } \right)} \right) = 0\), \(j = 1,2\). If \(\lambda_{j} = 0\) or \(\sum\nolimits_{i = 1}^{n} {c_{i,j} x_{i,j} } (\lambda_{j} ) = C_{j}\), \(j = 1,2\), because \(x\left( \lambda \right)\) satisfies Eq. (6) and Eq. (7), then \((x(\lambda ),\lambda )\) will satisfy all the KKT condition. Thus, if \((x(\lambda ),\lambda )\) satisfies \(\lambda_{j} = 0\) or \(\sum\nolimits_{i = 1}^{n} {c_{i,j} x_{i,j} } (\lambda_{j} ) = C_{j}\), then \(x^{*} = x(\lambda )\).

Proof of Proposition 3

\(\lambda_{2} = 0\) or \(\sum\nolimits_{i = 1}^{n} {c_{i,2} } x_{i,2} (\lambda_{1} ,\lambda_{2} ) = C_{2}\) implies \(\lambda_{2} (C_{2} - \sum\nolimits_{i = 1}^{n} {c_{i,2} x_{i,2} } ) = 0\). If \(\lambda_{2} = 0\) or \(\sum\nolimits_{i = 1}^{n} {c_{i,2} } x_{i,2} (\lambda_{1} ,\lambda_{2} ) = C_{2}\), then \((x(\lambda_{2} ),\lambda_{2} )\) will satisfy all KKT conditions, since \(x_{i,1} (\lambda_{1} ,\lambda_{2} )\) and \(\lambda_{1}\) is the optimal solution of Eqs. (6)–(8) and \(\lambda_{1} (C_{1} - \sum\nolimits_{i = 1}^{n} {c_{i,1} x_{i,1} } (\lambda_{1} ,\lambda_{2} )) = 0\). Thus we have \(x^{*} = x_{i,2} (\lambda_{1} ,\lambda_{2} )\) if \((x_{i,2} (\lambda_{2} ),\lambda_{2} )\) satisfies \(\lambda_{2} = 0\) or \(\sum\nolimits_{i = 1}^{n} {c_{i,2} } x_{i,2} \left( {\lambda_{2} } \right){ = }C_{2}\).

Proof of Proposition 4

(1) If \(\lambda_{1} > \frac{{p_{i} - k_{i,1} }}{{c_{i,1} }}\) or \(\lambda_{2} > \frac{{(1 - r)(p_{i} - k_{i,2} )}}{{c_{i,2} }}\), then \(x_{i,1} = F_{i}^{ - 1} ( {( {\frac{{p_{i} - k_{i,1} - \lambda_{1} c_{i,1} }}{{p_{i} - s_{i} }}} )^{ + } } )\), and \(x_{i,2} = F_{i}^{ - 1} ( {( {\frac{{(1 - r)(p_{i} - k_{i,2} ) - \lambda_{2} c_{i,2} }}{{(1 - r)(p_{i} - s_{i} )}}} )^{ + } } )\).

(2) If \(\lambda_{1} \le \frac{{p_{i} - k_{i,1} }}{{c_{i,1} }}\), \(\lambda_{2} \le \frac{{(1 - r)(p_{i} - k_{i,2} )}}{{c_{i,2} }}\) and \(\frac{{p_{i} - k_{i,1} - \lambda_{1} c_{i,1} }}{{p_{i} - s_{i} }} < \frac{{p_{i} - k_{i,2} - \frac{{\lambda_{2} c_{i,2} }}{1 - r}}}{{p_{i} - s_{i} }}\), then \(x_{i,1} = F_{i}^{ - 1} ( {( {\frac{{(p_{i} - k_{i,1} ) - (1 - r)(p_{i} - k_{i,2} ) - \lambda_{1} c_{i,1} + \lambda_{2} c_{i,2} }}{{r(p_{i} - s_{i} )}}} )^{ + } } )\), \(x_{i,2} = F_{i}^{ - 1} ( {\frac{{(1 - r)(p_{i} - k_{i,2} ) - \lambda_{2} c_{i,2} }}{{(1 - r)(p_{i} - s_{i} )}}} ) - F_{i}^{ - 1}( {( {\frac{{(p_{i} - k_{i,1} ) - (1 - r)(p_{i} - k_{i,2} ) - \lambda_{1} c_{i,1} + \lambda_{2} c_{i,2} }}{{r(p_{i} - s_{i} )}}} )^{ + } }).\)

(3) If \(\lambda_{1} \le \frac{{p_{i} - k_{i,1} }}{{c_{i,1} }}\), \(\lambda_{2} \le \frac{{(1 - r)(p_{i} - k_{i,2} )}}{{c_{i,2} }}\) and \(\frac{{p_{i} - k_{i,2} - \frac{{\lambda_{2} c_{i,2} }}{1 - r}}}{{p_{i} - s_{i} }} \le \frac{{p_{i} - k_{i,1} - \lambda_{1} c_{i,1} }}{{p_{i} - s_{i} }}\), then \(x_{i,1} = F_{i}^{ - 1} \left( {\frac{{p_{i} - k_{i,1} - \lambda_{1} c_{i,1} }}{{p_{i} - s_{i} }}} \right)\), \(x_{i,2} = 0\).

For case (1) and case (3), it is obvious that \(x_{i,1}\) is decreasing in \(\lambda_{1}\) and \(x_{i,2}\) is decreasing in \(\lambda_{2}\).

We now study case (2). For any \(\lambda_{2} > 0\), when \(\lambda_{1} > 0\), then supplier1’s capacity constraint will be active. From Eq. (11), we know \(x_{i,1} > 0\) if \(p_{i} - k_{i,2} - \frac{{\lambda_{2} c_{i,2} }}{1 - r} > \frac{1}{r} \cdot \left( {k_{i,1} { + }\lambda_{1} c_{i,1} - k_{i,2} - \frac{{\lambda_{2} c_{i,2} }}{1 - r}} \right),\quad i = 1, \ldots ,n\). Thus we define the nonzero variable set as \(I\left( {\lambda_{2} } \right){ = }\left\{ {\left. i \right|p_{i} - k_{i,2} - \frac{{\lambda_{2} c_{i,2} }}{1 - r} > \frac{1}{r} \cdot \left( {k_{i,1} { + }\lambda_{1} c_{i,1} - k_{i,2} - \frac{{\lambda_{2} c_{i,2} }}{1 - r}} \right),i = 1, \ldots ,n} \right\}\) for the given \(\lambda_{2}\).

The slackness condition in Eq. (9) implies that \(\sum\nolimits_{i = 1}^{n} {c_{i,1} } x_{i,1} (\lambda ) = C_{1}\). Substituting \(x_{i,1} (\lambda )\) into \(\sum\nolimits_{i = 1}^{n} {c_{i,1} x_{i,1} } (\lambda ) - C_{1} = 0\).

We denote \(\sum\nolimits_{i = 1}^{n} {c_{i,1} x_{i,1} } (\lambda ) - C_{1} = 0\) by

$$G_{1} (\lambda_{1} ,\lambda_{2} ) \equiv \sum\limits_{i = 1}^{n} {c_{i,1} } F_{i}^{ - 1} \left( {\frac{{p_{i} - k_{i,2} - \frac{{\lambda_{2} c_{i,2} }}{1 - r}}}{{p_{i} - s_{i} }} - \frac{1}{r} \cdot \frac{{k_{i,1} + \lambda_{1} c_{i,1} - k_{i,2} - \frac{{\lambda_{2} c_{i,2} }}{1 - r}}}{{p_{i} - s_{i} }}} \right) - C_{1} = 0.$$
(25)

Using the derivatives of implicit functions on Eq. (25), we have

$$\begin{aligned} \frac{{dG_{1} (\lambda_{1} ,\lambda_{2} )}}{{d\lambda_{2} }} & = \sum\limits_{i = 1}^{n} {\frac{{c_{i,1} }}{{f_{i} (x_{i} (\lambda_{1} ,\lambda_{2} ))}}} \cdot \left( {\frac{{ - \frac{{c_{i,2} }}{1 - r} \cdot \frac{{d\lambda_{2} }}{{d\lambda_{2} }}}}{{p_{i} - s_{i} }} - \frac{1}{r} \cdot \frac{{c_{i,1} \cdot \frac{{d\lambda_{1} }}{{d\lambda_{2} }} - \frac{{c_{i,2} }}{1 - r} \cdot \frac{{d\lambda_{2} }}{{d\lambda_{2} }}}}{{p_{i} - s_{i} }}} \right) \\ & = - \sum\limits_{i = 1}^{n} {\frac{{c_{i,1} }}{{f_{i} (x_{i} (\lambda_{1} ,\lambda_{2} ))}}} \cdot \left( {\frac{{\frac{{c_{i,2} }}{1 - r}}}{{p_{i} - s_{i} }} + \frac{1}{r} \cdot \frac{{c_{i,1} \cdot \frac{{d\lambda_{1} }}{{d\lambda_{2} }} - \frac{{c_{i,2} }}{1 - r}}}{{p_{i} - s_{i} }}} \right) \\ & {\kern 1pt} = - \sum\limits_{i = 1}^{n} {\frac{{c_{i,1} }}{{f_{i} (x_{i} (\lambda_{1} ,\lambda_{2} ))}}} \cdot \frac{{c_{i,1} \cdot \frac{{d\lambda_{1} }}{{d\lambda_{2} }} - c_{i,2} }}{{r \cdot \left( {p_{i} - s_{i} } \right)}} \\ & = 0 \\ \end{aligned}$$

We have \(\frac{{d\lambda_{1} }}{{d\lambda_{2} }}{ = }\frac{{c_{i,2} }}{{c_{i,1} }}\). Thus

$$\begin{aligned} & \frac{d}{{d\lambda_{2} }}\sum\limits_{i = 1}^{n} {c_{i,2} x_{i,2} (\lambda_{2} )} \\ & = \sum\limits_{i = 1}^{n} {c_{i,2} } \left[ {\frac{1}{{f_{i} (x_{i} (\lambda_{1} ,\lambda_{2} ))}} \cdot \frac{{ - \frac{{c_{i,2} }}{1 - r}}}{{p_{i} - s_{i} }} - \frac{1}{{f_{i} (x_{i} (\lambda_{1} ,\lambda_{2} ))}} \cdot \left( {\frac{{ - \frac{{c_{i,2} }}{1 - r}}}{{p_{i} - s_{i} }} - \frac{1}{r} \cdot \frac{{c_{i.1} \frac{{d\lambda_{1} }}{{d\lambda_{2} }} - \frac{{c_{i,2} }}{1 - r}}}{{p_{i} - s_{i} }}} \right)} \right] \\ & = \sum\limits_{i = 1}^{n} {\frac{{c_{i,2} }}{{f_{i} (x_{i} (\lambda_{1} ,\lambda_{2} )) \cdot r \cdot \left( {p_{i} - s_{i} } \right)}}} \cdot \left( {c_{i.1} \frac{{d\lambda_{1} }}{{d\lambda_{2} }} - \frac{{c_{i,2} }}{1 - r}} \right). \\ \end{aligned}$$
(26)

Substituting \(\frac{{d\lambda_{1} }}{{d\lambda_{2} }}{ = }\frac{{c_{i,2} }}{{c_{i,1} }}\) into Eq. (26), then we have

$$\begin{aligned} \frac{{d\sum\limits_{i = 1}^{n} {c_{i,2} x_{i,2} (\lambda_{2} )} }}{{d\lambda_{2} }} & = \sum\limits_{i = 1}^{n} {\frac{{c_{i,2} }}{{f_{i} (x_{i} (\lambda_{1} ,\lambda_{2} )) \cdot r \cdot \left( {p_{i} - s_{i} } \right)}}} \cdot \left( {c_{i.1} \frac{{d\lambda_{1} }}{{d\lambda_{2} }} - \frac{{c_{i,2} }}{1 - r}} \right) \\ & = \sum\limits_{i = 1}^{n} {\frac{{c_{i,2} }}{{f_{i} (x_{i} (\lambda_{1} ,\lambda_{2} )) \cdot r \cdot \left( {p_{i} - s_{i} } \right)}}} \cdot \left( {c_{i.1} \frac{{c_{i,2} }}{{c_{i,1} }} - \frac{{c_{i,2} }}{1 - r}} \right) \\ & = - \sum\limits_{i = 1}^{n} {\frac{{c_{i,2} \cdot c_{i,2} }}{{f_{i} (x_{i} (\lambda_{1} ,\lambda_{2} )) \cdot r \cdot \left( {p_{i} - s_{i} } \right)}}} \cdot \frac{r}{1 - r} \\ & < 0 \\ \end{aligned}$$

Thus Proposition 4 is proved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Lai, Z. & Wang, Q. Multi-product dual sourcing problem with limited capacities. Oper Res Int J 21, 2055–2075 (2021). https://doi.org/10.1007/s12351-019-00503-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12351-019-00503-2

Keywords

Navigation